-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtransformer_v3.py
225 lines (197 loc) · 7.96 KB
/
transformer_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import math
import torchvision
from torch.autograd import Variable
from tools import BNClassifier , BottleSoftmax
# Standard 2 layerd FFN of transformer
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout = 0.3):
super(FeedForward, self).__init__()
# We set d_ff as a default to 2048
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
nn.init.normal(self.linear_1.weight, std=0.001)
nn.init.normal(self.linear_2.weight, std=0.001)
def forward(self, x):
x = self.dropout(F.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
# standard NORM layer of Transformer
class Norm(nn.Module):
def __init__(self, d_model, eps = 1e-6, trainable=True):
super(Norm, self).__init__()
self.size = d_model
# create two learnable parameters to calibrate normalisation
if trainable:
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
else:
self.alpha = nn.Parameter(torch.ones(self.size), requires_grad=False)
self.bias = nn.Parameter(torch.zeros(self.size), requires_grad=False)
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
# Standard positional encoding (addition/ concat both are valid)
class PositionalEncoder(nn.Module):
def __init__(self, d_model, max_seq_len = 80):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model, 2):
pe[pos, i] = \
math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe[pos, i + 1] = \
math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
# make embeddings relatively larger
x = x * math.sqrt(self.d_model)
#add constant to embedding
seq_len = x.size(1)
batch_size = x.size(0)
num_feature = x.size(2)
spatial_h = x.size(3)
spatial_w = x.size(4)
z = Variable(self.pe[:,:seq_len],requires_grad=False)
z = z.unsqueeze(-1).unsqueeze(-1)
z = z.expand(batch_size,seq_len, num_feature, spatial_h, spatial_w)
x = x + z
return x
# standard attention layer
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.sum(q * k , -1)/ math.sqrt(d_k)
# scores : b, t
scores = F.softmax(scores, dim=-1)
scores = scores.unsqueeze(-1).expand(scores.size(0), scores.size(1), v.size(-1))
# scores : b, t, dim
output = scores * v
output = torch.sum(output,1)
if dropout:
output = dropout(output)
return output
class TX(nn.Module):
def __init__(self, d_model=64 , dropout = 0.3 ):
super(TX, self).__init__()
self.d_model = d_model
# no of head has been modified to encompass : 1024 dimension
self.dropout = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.ff = FeedForward(d_model, d_ff=d_model/2, dropout=dropout)
def forward(self, q, k, v, mask=None):
# q: (b , dim )
b = q.size(0)
t = k.size(1)
dim = q.size(1)
q_temp = q.unsqueeze(1)
q_temp= q_temp.expand(b, t , dim)
# q,k,v : (b, t , d_model=1024 // 16 )
A = attention(q_temp, k, v, self.d_model, mask, self.dropout)
# A : (b , d_model=1024 // 16 )
q_ = self.norm_1(A + q)
new_query = self.norm_2(q_ + self.dropout_2(self.ff(q_) ))
return new_query
class Block_head(nn.Module):
def __init__(self, d_model=1024 , dropout = 0.3, head=16):
super(Block_head, self).__init__()
self.dropout = dropout
self.head = head
self.d_model = d_model
self.d_k = d_model // head
self.head_layers =[]
for i in range(self.head):
self.head_layers.append(TX())
self.list_layers = nn.ModuleList(self.head_layers)
self.q_linear = nn.Linear(d_model, d_model)
# self.v_linear = nn.Linear(d_model, d_model)
# self.k_linear = nn.Linear(d_model, d_model)
nn.init.normal(self.q_linear.weight, std=0.001)
nn.init.constant(self.q_linear.bias, 0)
# nn.init.normal(self.v_linear.weight, std=0.001)
# nn.init.constant(self.v_linear.bias, 0)
# nn.init.normal(self.k_linear.weight, std=0.001)
# nn.init.constant(self.k_linear.bias, 0)
def forward(self, q, k, v, mask=None):
bs = k.shape[0]
k = k.view(bs, -1, head, d_k)
q = F.relu(q_linear(q).view(bs, head, d_k))
v = v.view(bs, -1, head, d_k)
k = k.transpose(1,2)
v = v.transpose(1,2)
outputs = []
for i in range(self.head):
outputs.append(self.list_layers[i](q[:,i],k[:,i], v[:,i]) )
q = torch.cat(outputs, 1)
# k = k.transpose(1,2).view(bs,-1,self.d_model)
# v = v.transpose(1,2).view(bs,-1,self.d_model)
return q
class Tail(nn.Module):
def __init__(self, num_classes , num_frames, head=16):
super(Tail, self).__init__()
self.spatial_h = 7
self.spatial_w = 4
self.head = head
self.num_features = 2048
self.num_frames = num_frames
self.d_model = self.num_features / 2
self.d_k = self.d_model // self.head
self.bn1 = nn.BatchNorm2d(self.num_features)
self.bn2 = Norm(self.d_model, trainable=False)
self.pos_embd = PositionalEncoder(self.num_features, self.num_frames)
self.Qpr = nn.Conv2d(self.num_features, self.d_model, kernel_size=(7,4), stride=1, padding=0, bias=False)
self.L1 = Block_head()
self.L3 = Block_head()
self.L2 = Block_head()
self.classifier = BNClassifier(self.d_model, num_classes)
# resnet style initialization
nn.init.kaiming_normal(self.Qpr.weight, mode='fan_out')
nn.init.constant(self.bn1.weight , 1)
nn.init.constant(self.bn1.bias , 0)
def forward(self, x, b , t ):
x = self.bn1(x)
# stabilizes the learning
x = x.view(b , t , self.num_features , self.spatial_h , self.spatial_w)
x = self.pos_embd(x)
x = x.view(-1, self.num_features , self.spatial_h , self.spatial_w)
x = F.relu(self.Qpr(x))
# x: (b,t,1024,1,1) since its a convolution: spatial positional encoding is not added
# paper has a different base (resnet in this case): which 2048 x 7 x 4 vs 16 x 7 x 7
x = x.view(-1, t , self.d_model )
x = self.bn2(x)
# stabilization
q = x[:,t/2,:] #middle frame is the query
v = x # value
k = x #key
q = self.L1(q, k , v)
q = self.L2(q, k , v)
q = self.L3(q, k , v)
f = F.normalize(q, p=2, dim=1)
if not self.training:
f, y = self.classifier(f)
return f
f_, y = self.classifier(f)
return y, f_
# base is resnet
# Tail is the main transormer network
class Semi_Transformer(nn.Module):
def __init__(self, num_classes, seq_len):
super(Semi_Transformer, self).__init__()
resnet50 = torchvision.models.resnet50(pretrained=True)
self.base = nn.Sequential(*list(resnet50.children())[:-2])
self.tail = Tail(num_classes, seq_len)
def forward(self, x):
b = x.size(0)
t = x.size(1)
x = x.view(b*t, x.size(2), x.size(3), x.size(4))
x = self.base(x)
# x: (b,t,2048,7,4)
return self.tail(x, b , t )