-
Notifications
You must be signed in to change notification settings - Fork 5
/
prachibivisualization.twb
1499 lines (1498 loc) · 95.1 KB
/
prachibivisualization.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20194.19.1010.1202 -->
<workbook original-version='18.1' source-build='2019.4.0 (20194.19.1010.1202)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<MapboxVectorStylesAndLayers />
<SheetIdentifierTracking ignorable='true' predowngraded='true' />
<SortTagCleanup />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='bidata' inline='true' name='federated.0nfm8p71k6syr214w0moe0hvb51o' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='bidata' name='textscan.09poz320t4h4uo105p28g03ej31z'>
<connection class='textscan' directory='C:/Users/SANIYA/Desktop' filename='bidata.csv' password='' port='0' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.09poz320t4h4uo105p28g03ej31z' name='bidata.csv' table='[bidata#csv]' type='table'>
<columns character-set='windows-1252' header='yes' locale='en_IN' separator=','>
<column datatype='integer' name='SRNO' ordinal='0' />
<column datatype='string' name='transactionid ' ordinal='1' />
<column datatype='integer' name='customerid' ordinal='2' />
<column datatype='string' name='customername ' ordinal='3' />
<column datatype='string' name='productid ' ordinal='4' />
<column datatype='string' name='category ' ordinal='5' />
<column datatype='string' name='subcategory ' ordinal='6' />
<column datatype='string' name='productname ' ordinal='7' />
<column datatype='integer' name='quantity' ordinal='8' />
<column datatype='string' name='state ' ordinal='9' />
<column datatype='string' name='city' ordinal='10' />
<column datatype='string' name='payment' ordinal='11' />
<column datatype='real' name='sales ' ordinal='12' />
<column datatype='real' name='profit' ordinal='13' />
<column datatype='string' name='dateid' ordinal='14' />
<column datatype='integer' name='day' ordinal='15' />
<column datatype='string' name='month' ordinal='16' />
<column datatype='integer' name='year' ordinal='17' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[bidata.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"ibm-5348_P100-1997"</attribute>
<attribute datatype='string' name='collation'>"en_GB"</attribute>
<attribute datatype='string' name='currency'>"Rs"</attribute>
<attribute datatype='string' name='debit-close-char'>""</attribute>
<attribute datatype='string' name='debit-open-char'>""</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_IN"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>SRNO</remote-name>
<remote-type>20</remote-type>
<local-name>[SRNO]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>SRNO</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>transactionid </remote-name>
<remote-type>129</remote-type>
<local-name>[transactionid ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>transactionid </remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>customerid</remote-name>
<remote-type>20</remote-type>
<local-name>[customerid]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>customerid</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>customername </remote-name>
<remote-type>129</remote-type>
<local-name>[customername ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>customername </remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>productid </remote-name>
<remote-type>129</remote-type>
<local-name>[productid ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>productid </remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>category </remote-name>
<remote-type>129</remote-type>
<local-name>[category ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>category </remote-alias>
<ordinal>5</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>subcategory </remote-name>
<remote-type>129</remote-type>
<local-name>[subcategory ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>subcategory </remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>productname </remote-name>
<remote-type>129</remote-type>
<local-name>[productname ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>productname </remote-alias>
<ordinal>7</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>quantity</remote-name>
<remote-type>20</remote-type>
<local-name>[quantity]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>quantity</remote-alias>
<ordinal>8</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>state </remote-name>
<remote-type>129</remote-type>
<local-name>[state ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>state </remote-alias>
<ordinal>9</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>city</remote-name>
<remote-type>129</remote-type>
<local-name>[city]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>city</remote-alias>
<ordinal>10</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>payment</remote-name>
<remote-type>129</remote-type>
<local-name>[payment]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>payment</remote-alias>
<ordinal>11</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>sales </remote-name>
<remote-type>5</remote-type>
<local-name>[sales ]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>sales </remote-alias>
<ordinal>12</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>profit</remote-name>
<remote-type>5</remote-type>
<local-name>[profit]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>profit</remote-alias>
<ordinal>13</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>dateid</remote-name>
<remote-type>129</remote-type>
<local-name>[dateid]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>dateid</remote-alias>
<ordinal>14</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>day</remote-name>
<remote-type>20</remote-type>
<local-name>[day]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>day</remote-alias>
<ordinal>15</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>month</remote-name>
<remote-type>129</remote-type>
<local-name>[month]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>month</remote-alias>
<ordinal>16</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>year</remote-name>
<remote-type>20</remote-type>
<local-name>[year]</local-name>
<parent-name>[bidata.csv]</parent-name>
<remote-alias>year</remote-alias>
<ordinal>17</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column aggregation='None' datatype='string' name='[city]' role='dimension' semantic-role='[City].[Name]' type='nominal' />
<column datatype='integer' name='[day]' role='dimension' type='quantitative' />
<column aggregation='None' datatype='string' name='[state ]' role='dimension' semantic-role='[State].[Name]' type='nominal' />
<column datatype='integer' name='[year]' role='dimension' type='quantitative' />
<column-instance column='[state ]' derivation='None' name='[none:state :nk]' pivot='key' type='nominal' />
<drill-paths>
<drill-path name='state , city'>
<field>[state ]</field>
<field>[city]</field>
</drill-path>
</drill-paths>
<layout dim-ordering='alphabetic' dim-percentage='0.574046' measure-ordering='alphabetic' measure-percentage='0.425954' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:state :nk]' type='palette'>
<map to='#4e79a7'>
<bucket>"arunachal pradesh"</bucket>
</map>
<map to='#59a14f'>
<bucket>"madhya pradesh"</bucket>
</map>
<map to='#76b7b2'>
<bucket>"himachal pradesh"</bucket>
</map>
<map to='#e15759'>
<bucket>"haryana"</bucket>
</map>
<map to='#edc948'>
<bucket>"maharashtra"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"gujrat"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"India"' />
</semantic-values>
</datasource>
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<worksheets>
<worksheet name='Bar'>
<table>
<view>
<datasources>
<datasource caption='bidata' name='federated.0nfm8p71k6syr214w0moe0hvb51o' />
</datasources>
<datasource-dependencies datasource='federated.0nfm8p71k6syr214w0moe0hvb51o'>
<column datatype='string' name='[month]' role='dimension' type='nominal' />
<column-instance column='[month]' derivation='None' name='[none:month:nk]' pivot='key' type='nominal' />
<column datatype='real' name='[sales ]' role='measure' type='quantitative' />
<column-instance column='[sales ]' derivation='Sum' name='[sum:sales :qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
</panes>
<rows>[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:sales :qk]</rows>
<cols>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:month:nk]</cols>
</table>
<simple-id uuid='{2A6148A9-2DD9-4728-AD05-6463C78F9849}' />
</worksheet>
<worksheet name='Geographical'>
<table>
<view>
<datasources>
<datasource caption='bidata' name='federated.0nfm8p71k6syr214w0moe0hvb51o' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.0nfm8p71k6syr214w0moe0hvb51o'>
<column-instance column='[state ]' derivation='None' name='[none:state :nk]' pivot='key' type='nominal' />
<column datatype='real' name='[profit]' role='measure' type='quantitative' />
<column aggregation='None' datatype='string' name='[state ]' role='dimension' semantic-role='[State].[Name]' type='nominal' />
<column-instance column='[profit]' derivation='Sum' name='[sum:profit:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<natural-sort column='[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:state :nk]' direction='ASC' />
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='size-bar' field='[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:profit:qk]' field-type='quantitative' max-size='1' min-size='0.005' type='centersize' />
</style-rule>
<style-rule element='map'>
<format attr='washout' value='0.0' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<lod column='[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:state :nk]' />
<color column='[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:profit:qk]' />
<geometry column='[federated.0nfm8p71k6syr214w0moe0hvb51o].[Geometry (generated)]' />
</encodings>
</pane>
</panes>
<rows>[federated.0nfm8p71k6syr214w0moe0hvb51o].[Latitude (generated)]</rows>
<cols>[federated.0nfm8p71k6syr214w0moe0hvb51o].[Longitude (generated)]</cols>
</table>
<simple-id uuid='{F05752F3-EA8F-427F-9C86-68FF24F562EB}' />
</worksheet>
<worksheet name='Line'>
<table>
<view>
<datasources>
<datasource caption='bidata' name='federated.0nfm8p71k6syr214w0moe0hvb51o' />
</datasources>
<datasource-dependencies datasource='federated.0nfm8p71k6syr214w0moe0hvb51o'>
<column datatype='integer' name='[day]' role='dimension' type='quantitative' />
<column-instance column='[day]' derivation='None' name='[none:day:qk]' pivot='key' type='quantitative' />
<column datatype='real' name='[sales ]' role='measure' type='quantitative' />
<column-instance column='[sales ]' derivation='Sum' name='[sum:sales :qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
</panes>
<rows>[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:sales :qk]</rows>
<cols>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:day:qk]</cols>
<page-trail-options enabled='true' mark-type='all' />
</table>
<simple-id uuid='{99656B78-7715-4FCF-9221-F3BCAD411180}' />
</worksheet>
<worksheet name='Motion Chart'>
<table>
<view>
<datasources>
<datasource caption='bidata' name='federated.0nfm8p71k6syr214w0moe0hvb51o' />
</datasources>
<datasource-dependencies datasource='federated.0nfm8p71k6syr214w0moe0hvb51o'>
<column aggregation='None' datatype='string' name='[city]' role='dimension' semantic-role='[City].[Name]' type='nominal' />
<column-instance column='[city]' derivation='None' name='[none:city:nk]' pivot='key' type='nominal' />
<column-instance column='[state ]' derivation='None' name='[none:state :nk]' pivot='key' type='nominal' />
<column datatype='real' name='[sales ]' role='measure' type='quantitative' />
<column aggregation='None' datatype='string' name='[state ]' role='dimension' semantic-role='[State].[Name]' type='nominal' />
<column-instance column='[sales ]' derivation='Sum' name='[sum:sales :qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
</panes>
<rows>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:city:nk]</rows>
<cols>[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:sales :qk]</cols>
<pages>
<column>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:state :nk]</column>
</pages>
<page-trail-options enabled='true' mark-type='all' />
</table>
<simple-id uuid='{EF3BBEDA-E1F3-4396-90D7-24C11E5D65FC}' />
</worksheet>
</worksheets>
<windows saved-dpi-scale-factor='1.5' source-height='44'>
<window class='worksheet' name='Bar'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='30'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:dateid:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:month:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{317FAF6C-0D97-415E-8710-FB86AC8BEC51}' />
</window>
<window class='worksheet' maximized='true' name='Geographical'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='30'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:profit:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:city:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[sum:profit:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{6C1C26DD-241B-4DC8-AF72-9CAC2E12BD26}' />
</window>
<window class='worksheet' name='Line'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='30'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:dateid:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:day:qk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:month:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{D9E118BE-C284-495F-A85B-E1A47646F1D2}' />
</window>
<window class='worksheet' name='Motion Chart'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='30'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card type='currpage' />
</strip>
</edge>
</cards>
<viewpoint>
<current-page>
<multibucket>
<bucket>"maharashtra"</bucket>
</multibucket>
</current-page>
<highlight>
<color-one-way>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:city:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:dateid:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:day:qk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:month:nk]</field>
<field>[federated.0nfm8p71k6syr214w0moe0hvb51o].[none:state :nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{2324C1EF-319B-4325-B72C-7BCD8B5884AC}' />
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Bar' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAABYlAAAWJQFJUiTw
AAASQElEQVR4nO3daWwb+XnH8e/wGh6iLkqyROu0bPmS1+eudzdButukKdokbVC0CdACRYu0
6NsCfVn0ZdH2VV/0TV+1QNPmRRsgadImDXJgj+xmvZbWWlmWqPumKEqieIn3zPSF19psLGtF
mqRk/58PIIAUdx4+1M6Pc5DzWLMsy0IIRdmOuwEhjpMEQChNAiCOLBMLM7++g1Ha5Sc/vXvc
7VSF47gbEMerkN7hp2+8TTSep6tFx2g4zedfHOK/v/Nd2s/dpKvFx/TECL7OIYzFN/mf8V2+
8adfZfTdt1lbDfHl3/8abQ36cb+MiskWQHHFvRhzkQwBbRerbYiJkbd464ffpv3iq4Te/j7v
ToXpHn6JD979GefOD3HtlV9n8HQAzdnApdM6o6GN434JT0W2AIL2U0HanE4aTnczqzvQNA2j
VMK0LJwuD319fbh1Gz5/I4VMEtM0ae86TWe7h3jx2T6JKAFQnNMX4Mp5F022DlyNOrdvv8LV
4Qv87/e+z5XXv0ow0ILXDrdvv0Kgf5jg2HdZ2zG4fm2IplMOzpotx/0SnopW788BLMvCsixs
Ntn7EsfvWNZC+exNnBTyNiyUJgEQSpMACKVJAITSJABCaRIAobTn4oOwta0kqUyhrGW8uoO+
zuYadSSeFc9FAL75ow95b3K9rGUu9rXx93/xhRp1JJ4VsgsklCYBEEqTAAilSQCE0iQAQmkS
AKE0CYBQmgRAKE0CIJQmARBKkwAIpUkAhNIq/jJcZG2R6E4S0+7mYn8741ML2HUf1y4Pcn9s
nJyhce3GdVZmJkhkcvScHeZUs7eavQvx1CreApw63c+lC+fIpRPMzyxy/toN/FaW9fAyevsA
188GmJxdJVlycOvmTVbmQtXsW4iqqHgLYJayPJgMYdc9FEsFdIcN3a6RyRVw+nWcnhKFvRi6
xwaaDTAxzY9/qjkaxayglmVZlEqlqvUgnk0VB2AzskVHVxdLSyv0BVsJhebJpItcO9PP+MQs
WXuegaGrLE+Ns7Qwja+5C5vNhqZpaJqG3W6v2ouwaVrZy2iahsPxXFwOIZ5CxWtAW3s78WSa
q9eu49Gd6PEYjv4ePB4XVy7ZKZg2mvweWq69QCKdo69Vrr4SJ0/FAXC5vXS4Pz6obWoJ7N/2
NjTy6BGn7qFN91TcoBC1JKdBhdIkAEJpEgChNAmAUJoEQChNAiCUJgEQSpMACKVJAITSJABC
aRIAoTQJgFCaBEAoTQIglCYBEEqTAAilSQCE0iQAQmkSAKG0igNgGgVmQ1Nsx9OYpRxTExNM
hOYwLYvY5jrL61EsC7KpXabnlioaXSJErVUcgGgkQrB/kLmpcRJbazhae7g0dIZieov5SBot
ucbKdpKxB7MEAzpjD+ar2bcQVVHxVIhTwR4iK3M4GwLY7DqJ9SVGwhb9HTqtnT30NmV4b3wV
j78Rf0sXxvyIDMYSJ07FAVhfmCSlNXNjOIhhGNzq6GH+ww/I2d3kMxmyWhJfoIV8KgZWAU1z
ymAsceJUvAuUzuQppnd4MD1PMhZl7MMP2XP56enqxba3wWQ4x+UzXXQ2uRgZHWfo8uVq9i1E
VVT8Fnjhyo1P3G/tCH782PDV/dvdA0N0D1T6LELUlpwGFUqTAAilSQCE0iQAQmkSAKE0CYBQ
mgRAKE0CIJQmARBKkwAIpUkAhNIkAEJpEgChNAmAUJoEQChNAiCUJgEQSpMACKVJAITSKg6A
ZRrsxmJk8wUsyyKViJPNFwDIZdIk0xksC0qFHLF4oqpjUISoloovio+sr1CwHEyGZjjXHWA9
BZnEDjeunmdsYgGfLc+p89dZmRyjNdBIZLuZS2dPV7N3IZ5axQHo7O4nvbtJ2OlmI5rk0s2b
bD5IsxIO0953nsHGNO9PLaH7Wxg8d567I6OYZpcMxhInSsUB2Akvsrhd4KVbV5kdu0fBMCkY
Fl63TqZYoJjP4/J4MEsZsEzQbDIYS5w4FR8DrK1HcGkFpqbn6Tvbx9QHH5C0eTgd7CUbnefe
7BaXhnrxO4qMjI7SN3ihmn0LURUVvwVee+nVT9x/6aXAx4/dfHH/9rlLVxHipJLToEJpEgCh
NAmAUNqhAcjuJcnl8ywvr1A0zHr1JETdHHoQ/J//9q90nm7nztg8N774Nb788vl69SVEXRy6
BQh2NPPjd0N85uYF3LqrXj0JUTeHbgE+84XfpuB8h+auPoL9HfXqSYi6OXQL8O1vfZPWFi9z
cyHevDdXr56EqJtDAzB88RxvvvkOvxiZ4oVzPfXqSYi6OXgXyLJIJuP0XXmVPxt+GTQbvgZ/
nVsTovaecAxgMXbnbSLx3P5vXrj9Ghf65DhAPF8O3gXSbHzui79D0GdxZ3SM+6N3iMQzdW5N
iNo79CzQ9NIGn3/9NXzWDlvxdL16EqJuDj0I/r0/+Dovv3SdeM7D6zfO1qsnIerm0AD89Aff
4/6993jn3V9wf3GzXj0JUTeHfxnOKvKjn7zH53/tJol0tk4tCVE/hx4D/O4ffoPPpXL4dBsO
d0O9ehKibg4NgFP30KF76tWLEHUn1wMIpUkAhNIqvih+dyvM2Ph9bn72N3FmVnlnbI2OUwEu
DZ7m/btjWJbJ8K2XWZgYwQBau4Y40x341LpC1FPFAWhpD3KmZxuAvWQS3evG6/OR2l6nffAK
g/40I9OLOD0t3Bp+OBhr4HQrlmVhmtW9uqySGVuWZWEYRlX7EM+eqkyGauu7zGd7LWY+uMtu
oBFcABbaIQOrDnusPrQT0IM4bhUHYCu8wsLSKt6Mi74OD5GtOHt5uNXVy73RMbZMixdevM3C
xCgjd+/Q0XNhf4Wz2R5OiauWStZjTaOqPYhnU8UBaA/28nqwd/9+Z7Bv//bLr348NOuFm7cr
fQohak7eAoXSJABCaRIAoTQJgFCaBEAoTQIglCYBEEqTAAilSQCE0iQAQmkSAKE0CYBQmgRA
KE0CIJQmARBKkwAIpUkAhNIkAEJpEgChtKpMhXheJPfyFMscleJy2PF79Rp1JGqt4gAYhRwz
c3MMDA3jIsfU1Ax6Y4DB3i6WZqdJlxxcvniW7fAy4a0kQ5cu43XZq9l71f3Dt95hYjFa1jK3
LgT5mz/+XI06ErVW8S7QXiYDpRwFA5anp2jrP092O8zO9hopGulpLDG9ssVSJMHwpUEmH0xV
s28hqqLiLUBjcyu70TUAklmD036dotvB5k4CX8sZmpuchMajuH06DpcPy8hhmub+j1XJOLcn
MCuoZVkWpVLpsd+VXcd8vI54dlTlGCDQ6GJzJ81Opkj/2U4Ww1E299J09HSztbZIbi+GXfdj
s9nQtIcT2ez26u0O2SqYjKVpGg6H47HflV3H9ngd8eyoeBdoK7xCLF1iYSbEqTMXKWyv0t57
lqbmTjr9FgmaGehs5sKZIHPLW1y5NFTNvoWoiqeaDNf+S5PhBs9f3L/d1XuGro9uNwU6aQp0
VtygELUknwMIpUkAhNIkAEJpEgChNAmAUJoEQChNAiCUJgEQSpMACKVJAITSJABCaRIAobRj
/R7vf/x4nF88WCtrma7WBv5arsASVXKsAdhJZlmNJo+zBaE42QUSSpMACKVJAITSJABCaRIA
obSqnAWyLJNCoQhouFxOTKOEaT2clmBZBsWSicvpqGjqghC1VJUAZGIr3A3F6DrVypnuVu6O
PsBOibPXXmJxYhSX24W7qYeh/lPVeDohqqYqAchl8jhdNgzTIr29QceZYc40phmZXsLpa+WF
4fPcHRnF7G3HsiwMw8CyrMoGUVlUZ6BVtQZjHVBHPDuqEoDW7iFe7Yb5sVF29UZMzcA0Stic
DqDwcK1F2x+KZVkWdru9skFUGo8P1apo1+rx4VyVlNEOqCOeHVUJwM7mGmubMXJFGzeCvYx/
MMZdE67depHFyTFGRt4nOHB5f+V/FIRK/eqyFa3+2kGT4CpKgBzbPMOqEoC2zh7aOnv279+6
/fL+7UtXb1bjKYSoCTkNKpQmARBKk7HGCvjLf/o/coXyzlR96ZUhvvLq8z/QWAKggMhOmmyZ
AUhn8jXq5mSRXSChNNkC1MB33ppiJ5kta5mz3a28dq2/Ng2JJ5IA1MAbY8ssReJlLfPatX4J
wDGQXSChNAmAUJoEQChNAiCUJgEQSpMACKVJAITSJABCaRIAobSaB2BrY4UPxyfIFo1aP5UQ
ZavpVyHMUo7FcIzrw4N8OBHi1vXLtXy6587EQpRCqbw3jvZmLz0dTTXq6OTY3E2zvpUqe7nr
5zo/cQlrTQNgFAu43G6cuh/LKO/LYQL+8b/eYzuRKWuZL79yjj//yvN/Gep7D9b4lx+Mlb3c
d//265+4X9NdIIdTp5DNks/sYnc11PKphKhITbcAmkNnqK+TmcUIw5fP1/KpRI3F0znm12Nl
Lzc80IHu+ng1C61s88a9pbLr/MlvXcPtqv7qWvOvQze3d9Hc3lXrpxE1FlrZ5u/+/edlL/fP
f/UlugL+/ftrW0l+eGeu7Dp/9BtXahIAzapkHFqFTNPc/7Hb7URiaZJ7B19692h+0K9yOe30
dzbvT5az2WyEt1Oks4WDqmBZB8/t8egOejqa9qfBaZrGajRBNv/4pYOWZT2c/3PA3CCfx8np
tkZM09yfd7QciZM/4KzXk14TQKNXpzPQ8Ik6C+FdSoZZVp3mBjcdLT5M08Rme7iHO7cWwzzg
f/NhdQKNHgJN3v376WyB8PbBB52H1envasblsO/3k9jLsRnbK7vOYLAFu922X2c3lWUrfvDx
0WF1znW3omnafp26BuBRc48CcBLqmObDFezRylIpwzAe/kGfckhWNeucpIl11eqn2nWO5Yqw
p13ZqlmnWlPdTtJrqmadajlpr+tRnbr/lZ40FjG3l6RQxinvJ9VJxTaZmlnkl3ccNjejZdcp
10msc5Bkqvxz5wfJZ/ce283bjG6W3U+5ql3nxLxNFLJZDMtic22JmYVVLEwSsW2mQyGyxcf3
gw9UzPLGz+9goVHMpgjNzGOYFpHwKqFQiOwRE7Yb22J6eobdnShzS+tgmawvzbOwsoFllkim
0qyuhT+1jmWZrC7OsrS2iWUU2NxYY2ZhBQuTVDLF6uqn/xOxpfwe62urrISjrCzMsJvKUsim
ePDgAalsgd3dh9ceJ+JxzCPszGYzGXKZNIWSSSoep1DIsRWNMD2/TDn7wsV8jqJhkUolsUoF
Eqk9otEnv9E8zmJlfobl9SgWBqlkGiOfIZXJk9tLMDk1TSJ9lM9ALDbXl5hfXseyLDZWF4ns
JDCKWdZXV1hai3DYTv6JCUBsfYU9w8LpbkAvRJnfSHL//hS9PUFmZ+ePVsThpndggIvnehkb
m6C3s4mJ0CLZbJ7+/m7Gx+8fqczkZIhgm48HS1vYUlHiRRO9oYlibJlwLM5bb7yDx3+ET1tN
E4+/hdT6DFuJNIuRBB0+g+nFDd7/+Vug+z61RCYWZjNrJ7IcorEjyPL8PMWSSVdnBxMT9wkv
zrFXLDK/uHyk0b4rK6vEtsIkMkVWZ+dIpreZD8dpdWRY3ckdocJDiZ0NEtkiy8tLGPk086uR
Iy8LgGXg8beyG14gnsmyvBwmn4yyEo0zPhHi7NlOluY3PrWMWcyzuL5FoKmBRGSeWNFDdHGW
RCLKZgoc6Q3WE0+ecXRiAgBg5NLML61QNC0KuTzNrQF0XcdmO+IWQHs0gt0inYgxt7SOW3fi
8zfi1r047Ud7j/M3t+DRXQQCrehOB7nkLkurGxiWRb5Qou/sBdqajrDyprZZXotgmXlyRWhs
asLX2IpZyHKqZ4CejpYjvCY7Lc1NePwtNPk8OOwaK4sLJJJ7GIbB0Pl+Jkbv0RjoKn+8+0d/
jrb2dtxuHcOo3/e18rthFjZ2KJVMSh993cMCsEq4PX5cDge2I7wgzaFzpvsUUw9CxOJxtqIb
FAyLkmmjsdFPoMXPXu7JQ8FOVABsDh2nzSJTgAavjt/fgKbZ8Dcc/VNkv98P2Bk6N4hpgc/n
xamVGBsboyPYf+Qamt1Fg0fH3eDH4/FgMwsUTDteXcff4DlSHZfuhVKeks2N2wHrS3NMTC3S
P9D3UZ+fzqF78brsH/33Gn6/H3+Dl2QqhdfXgMMboLAXJxhsP1I9gKamZpZnJ4llC7icHnxu
J3bdi1cv/+yKzSgyObOAx+M58msCcHga0Yp7WDYnLocbIx9jZimM1+PD4ygyPjFF7gjfg7LM
EtvbMVxeL8GBCzQ5TRy6F5fdZHE2xFQkz2CH94nL/z90dgu+EjjGowAAAABJRU5ErkJggg==
</thumbnail>
<thumbnail height='192' name='Geographical' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAABYlAAAWJQFJUiTw
AAAgAElEQVR4nOS9V5MjR5Yu+IVCBLRKIJFILUpRdg+ne9Sd2bF9GbO1/Z9rtk9r+7DXbMd2
7525o3qmySHZJItVqTWAhNYBICL2AXW8HI6IgEhkkez9zNIyE4hw9/A4fvxol05OTpxYLAbT
NFGr1ZDJZCBJEtzQ7XYRCoWmPm80GohEIlAUhX0mSRK63S7C4TBarRaGwyEMw0C73YbjOIhE
IggGg1BVFZZlwbIstFotdDod7O3tYTQawbIs9Pt91z4JjuOg0WhAURTEYjH2mYhmswnLspBO
pzEcDqe+p2eWZdm1D/qh7yVJ8pynp4Cmabi8vGTjkSQJw+EQBwcHsG3b9ZnnhSRJ0DQNqqrC
tm30+/2pa6jPeSGOh+59zDhn9eXVBz9u8TvVtm00Gg2oqopYLIbBYADDMFw7CgQCaLVaSCQS
sG0bANButxGNRieIHwDq9TpisRgsy0IqlcL19TWy2SxSqRRGoxG63S4jSk3ToCgK4vE4NjY2
MBgMYFkWJEmCZVmQZZkNnF4EEUC320UqlUK328XDwwNs20Yul5uYlG63C03T0O/3EQgEMBqN
JiaHrvUibsdxYNv2xOf0N3/dqhdEIBDAcDiE4zhQVRWSJOHw8JCNBQAsy1pJX8PhkLUrvku+
Px5un4nEyF9Lc+23CPjv3ZiR1z18n359iONSY7HYxEutVCoIBoOuDfT7fYTD4YnGxM/6/T5M
05xYJIPBANvb27i/v8fW1hYcx4Gu6wgGg5AkiXEw27bR7XYnHiwQCMA0Tei6jlqthng8zr6j
fhzHQSgUgiRJCAQCqFQqSKfT6PV6aLfbCIfDiEaj6PV6bNz8QhInzbZtRgR0jSzLbJz8ohHb
WSUGgwGCwSD6/T5GoxEikQja7TYCgcDKOSkxGbd2vTjrImOgtuchUupz1q7hNZ5FxsWWGO0E
qVTKs4FQKIROp4NWq4V2u41msznBHfr9PmzbRjKZZMRv2zb72zRNnJ+fM641HA4xHA5hWRa7
RpIkDAYDdDodSJKEYDDIdotIJIJWq4V+v49arTb1sLSg6vU66vU6VFVFJBJhWzrtGiKHcwON
RwQvDvEL4qnEIWIwmqZhbW0N5XIZqqo+SV9eEHe7xzzvoouG+nP7zutnEaimaWI0GsG2bcTj
cVf5iT5TFAXhcBiBQIARtiRJaLVaTJaPRCKMwInwLMtCrVbD+vo6gsEgbm5usL29zUQRfnuk
+2RZRrPZhOM4UBSFES+JMIlEwvWBJElCJpOBpmnodrtIJpNoNpuQZRn9fh+KojDxiidenkOJ
W/UiW/2q4TgOOp0OAoEAHh4eUC6Xkc/nn7RPr3Hwf4vvzOsefp78ZHGve8VdYJ5+F4GqaRqT
+edpVFVVNjBZlqHrOhzHgaZpEw8oyzI6nQ5SqRQTH+ge+p76lGUZ5XIZuq6zhwyHw5BlGZIk
odfrwTRNWJaFeDyOer3uOT5JkqDrOhRFwWAwQKvVQjKZBADk83k8PDxgbW3NU34XCdqNq4jE
wP//FAuC2u90Ovj888+hKMqUIh8MBiHLMoihPRXc5mweunFbDPPe5/ZOVgV1lqLhp1ETsdXr
dWiaNvG54zgIh8MYjUYTi8O2bQQCAZTLZSQSCXS7XbRaLYTD4YmFyE+YYRgwDAOO4zBRiJfF
xQmihRSLxdiuYds2er3elDLrxsndJthre+U5lbiLrBKkl6iqisFgMPV9v9+HYRgrU4pFLPM8
boQuLoR5F4Hb32JfyywMeV5NmzoR0W63oaoqWq3W1CCHw+HUwhiNRtjc3ESpVIKmaWg0Gkgm
kzAMg4lVPFHzOkSj0YBhGFNKqN+kBAIBAGPx7eHhgVmI3IiUl+sX4ey2bU/oMU9h6huNRkw3
IouQOPZut/tok+iioF3db37cLGbA08zTopDr9TpM05x5odtDjEYjphfIssy24EajgVKphGg0
OnG/ruvMnr2xsYHhcIhYLDalTAPTnILMpW4vfx5YloX19XXU6/W5rRqiwus1L/zC4ccLAIVC
YeGxusFxHBwdHaFYLMJxHMZceIX+McrgMuNZpr+n0pmWfV5V07SZ9lae+OkByJYfi8UYcVSr
VRiGgWQyiXa7DcMwIMsyLMuCqqpoNBooFovY3d2FoigwTROqqiIQCKDb7aLf708pt2TtoX68
ZPV5kEwm8fbtW6TT6bnlZD+zoCiCSZKE86trXD7UMbAlxDUHtw81/K+JhKdvZRFYloV8Po/T
01MYhoFKpYLPP/+cfU+61lOCnw+3vvjdlbfsid899QL1M2bwfavEWcnW7taQuMWZpgnTNBGL
xVhj0Wh0ghOSvN3v99lAotEojo6OMBgM2K4zHA5hmib7nocsy9A0DfF4nC0uN5l/HpCYEgqF
UCwWsb6+jtFoxBxN9Kxe8qkodokTKcsyHh4ecNJ2ENl8Bh2ADQeZ1BD//t0b/PUXnz2a+9m2
DVVVcXh4CFmWMRwOp5iX2zj9zIj89/OMz0ueF52V/HieGm4Lapbxgt1bKpWcZrPJzIORSGRi
Qoj4+Ydrt9sIBoNQFGWiI1EJLBQK2NvbY+KAZVkTnJf+D4fDE7K+JEnodDoYDAbMQ+2nYC6i
x5AC3uv1YBgGstksWwgixBcpcjzHcWA7DiQA//z1D+ipISQ2tqfG1++0EGiXEQ9I+PSjV+z7
ft/E92/e4qMXzxDkdghFUWbK8oqi4PLyEvv7+55jd2MWPBd0a39eowgxO5oTt/t4S58fF54X
bvfqug5JklzDN+aB2u120ev1sL6+zuJxyNvqprSMRiPIsjzlTBInNBgMYjAYQJIkTx2j3+9P
cX0ALByDFqPfZC3KYQaDAdLpNBRFQbVaxeXlJQzDYM/Pt8uP223rfnNyhrvOEAoAffMIuuzu
YDPCUSAcRanVwL998z2ONnMoVqq464xgrO3g99+9wV//6aQoQ6EbXpBlGcFgEOVyGalUasr6
M8ufIf49r+jkJc54mStXqfi63atpGjqdzsT4eAPKLMiO42BtbQ2O4zDC5gc+Go2Y4ijLMgtw
81vJhmHg+voaW1tbnmY56o9XMKlN3nrE6x5u1oZlJnQ4HLLFt7u7i1AohJOTE1xfX6Pb7eL3
v/+9J/fkPzvY3YYmywhuHkL2IH4ewWgco/Qu/vX0HhUji/DGHhRNQz+YxA9vT9h1lmVNcHVV
Vac47HA4xMbGBounWkbUEBXYx8jmH0LxdkOn05kaP78zzYJMDhRCJBKZIHiKpWk2m2g0Gmx3
APxjNBzHgWEYnlyMOKybhYUUZ/5aPyw78ZZlwTRNhEIhHBwcYHNzE8PhEIlEgnmf/RZ6IBBA
0lDgLKB4yoqC9M4h1HfmWQAIJddwVWnBdhzUajV88/1r/G//53+FoijQNA03Nzeuc2DbNlKp
FJrNpitj4AnDTXT0u2cWeKZEP6J45Wc9WwVWwQxlt5tSqRRqtRps20YwGESv10M8Hkc8Hp/p
5FEUZWoX8UI4HGZOHV7mDQaDrH+CV1urULJ4HSCdTk9ERaqqyhYD9cczjP5gCAeP53xGbhf/
9f/57/jnkwLKgTTC8RQKhQLOzs4QDAZRr9dZv2T+HAwGqFarE7FXBNFy5zd/4kIB5g9W89uZ
6f5VLgIvU/mykPkGxQchLh4IBNBoNFwHI06wrus4OztDJpOZaWqkcAlRTHIcB/F4HHd3d65c
jOc8vLz3WCcQ74QrlUro9XoYDoeQJIkpWzQ+UtRLbXNK/FnmxWi6gdiLL5Dc3IU1GmLULMN2
HBweHiIWizGfCynxZ2dnOD09xfb29tx9eV3ntTh4cUJ0EHo9o2gV4iN9V+GkW7WYxcIKRSUv
mUzi4eEBmUwGhmGw6Ey/h6eAs1gsBk3TXF32fH+9Xg+xWMzVgqAoCpLJ5JRte9ZO4LcjzCPj
DodDHB4eYjQawTRNdLtdFoK8s7PDYm3I851QbVijIRRV8213HsjK+HUYkRiMz/4Ljm/OsLW5
CV3XmSg6HA7R6/Xw/PlzxjgWif3h9S1REebfrcgI+d90PX0mWgH59r1MkR/CPDoPVGDSXEWw
bRu6rjMnluhx5MOd+ckMBoN4eHjwjNYEwPwA0WjUkyjJPj+PbXneyZyHe9i2zYwB0WgU0WgU
uVwOrVYLX331FWKxGBRFQTqdxuvTC4zSOzA8iH8eMdANkiRBkmU0zfdh44eHhygUCtA0DVtb
WxgMBivhpqKliP+OxgJMizGuNnUP87TINFe9CJad53djlF2dKaZpYjgcsthz3tFB4GNf3AhU
FFOAMfHbts04v5t8SvKtW4rjrC14UXgpl2TyJf0gGo1C0zTs7OwgEongv/3+G9T1NIxIbK5+
Fh2z4zhAJIGLy0s2H5lMBolEAqPRaOFn50UTnjDdxBI35d9L1hchvk+vtle5AzyGFmRqgIck
SQiFQtA0jcXp0HYrErqblYS3EdMPnxQj5vjy7ZAYRVlPXnLmUy8CRVGg6zp0XYeqqqhUKtjY
2GCWGUcLIhAKz3yRjxljbC2Hb29rKFcqzFG5bLSnyOn9xj1LvufbFP8XmZ6X8YA+W2QheL1z
3vy5KF24uv3o5ng8jnA4jHa7jW63O9W4uJp5+VFRFKbktttt5qwIBAKwLMu1LbpnNBrNXACr
inoU+5BlmdndX79+zZRNym0mGXxNl9Fr1tg9j+nT77r41gH+4/Xp0rZ+vi2+bze5fZZyO++Y
xbZmmUsJ/DV+7fu9/0WZo8oPGpjm6pIkMW+toigYjUYTq5nnSCQ7dzodVKtVWJaFQCCAQCCA
er3OPLyk0HnJbvxnfia0VVsEyNrz8PCAUqmE58+fswQgCkcGxgaCP00mcV8s4YebU4Q3D+dS
sJeB4ziQU3mcXVzg6OBgZYveTfb3k+tFPVFUoPnv/HYPL/Fomfnj+3PbjTRNYx51LzpSRXHF
DRSERcklkiSxXF5d15lCFgqFcH9/z2RVIhjHGZtTTdNEIBBw3SLp7263O3fO66plSVVVcX19
DcMw8PHHH2MwGPiGI6xn1jAaDfG2UUMw5q30Pxa9RhXbv37+KHu6l5I7638vohSlAD9inrXI
/D7n4SVye9HSPJmOaqfTga7r6Pf7rl5eWkmlUgnAWIkNBAI4Pj7G1tYWkskkstksi/x8eHjA
Z599hm63O8FlDMPwLEfCD34wGLBKDzynempI0jhZp9/vMyvLLHlbkiREw2GMyhVgiQXgtQOK
kEcmDF1fSuzzu96NmBaF+I68iHTVmEf34pO0gLGPikrNEGNTyRsbi8VwfHyMTCbDPL4k8hQK
BUiShO3tbdZYNpuFruu4vb1laY2tVgsfffTRzMhK8itQFQeCGGoh3rfoJPDXeSlw/IuzLAvB
YJAp/fMsvng8jsDoeq5xuMGNCYgwMpv43X9+g7/44teuc7tIH8vAba7ot0j8btZCvp0Pwcy8
+iYmzDNiFQDbKg4PD0Gh0aPRCJ1OB51OB7lcjiWwUGNkldja2sLd3R00TcPh4SFM05xIXHHj
5DRJ9BlNJEWaztp++Yea5/tZFg0aB00Q7XJ+jjz+vhf5DH5s1mE8UgzystAoWgBt873uRYt1
FX3Nq9iKsrumaYhGo5BlGa1Wi0X+ejGan5L4gfGY3aIZmLpNRB2Px9FoNHB8fAxJkrCzswPH
cSaIgbRw+llfX0cikWCVG3gtnPcVaJrGagrxnmV+DOKgvTBL/uf1mnnt17ZtIxQKMXFvHkiS
hI3cOpRWaaX6CI9urYLnO3lI0jjuncq7eGGWJWQRK4kXSOTtdDowDMPVtE1GEfpOpJufckEQ
1EAgAFVVWW0gWZaRTqdhWRbK5TIrRcKD56y8R3KWVq/rOrrdLhKJBCzLQq/XY1loYgnEWVjU
9DgLjuMws20mk1lY4VyPhfAwHKB6/gbR3DaMaHz2TS5wW0RGNI6B2UOtVkOxWISmacjn86wW
k9s9Xkqtm9K6zBgdx2FydL/fn9jJ+bZVVWUBleLzee14y4xlWcilUglv3rzBYDBgSeuNRoP9
zyfHuNlv+c+9riE4jsNCJBRFQbPZRLfbZdXmvBaa20PPCz+bMX8Ntes478u5eMHN5La/t4tQ
/QZ/9ckhgq0C6ndXcJzFrTaO46BbK6N1fYJhf5xWqhkGvr95wNnFJfb393FwcICrqytmLROf
z2t++F15EQua1wLjHU/AOLqXymryP61Wa65QimUQj8dZ5Y95wVsZ1Ww2C2BcPblcLjMi3dzc
BAC2M3jBy3Y86wHb7TYikQhCoZCn88NLppznxS26xTvO2NZPUZ+apnkqnG7t6oEAvvj0IwDA
WiqFb/7wHeqmCc0IztV/p17FoFVDJqji1VoC689f4bu3p3B6QNscQg0YuBtq2O90oGkawuEw
+v0+G+es53Wz+y9irXHT6cR7vUzGFEs2GAwmRGmv/hdZmG7ZibOgKAqruaqORiOsr6+zL0g+
Iw44jygwS/Rxuz4ajfqWPfcyrbn9vwqQDnRzc4P7+3t89tlnj2ovHouhMhxhnhjRXrOOZ2EH
GwfP2EsFgM9ePmPRsLV6HT+cX8NxHJYN9ubNGxwdHTEOSNareawwbuLHvEYHt0VAOpTYBgsd
eTduUSn2YqDzgAon8yU2g8Exw+GLLIswTRODwWAcjFkqlRw+gUUUB+gB+QcH3svgblvbrIms
1+sT0aJeO4C4lfKK7aoXgK7rqFarKJVK2NjYYKXil0WlUsW/Xz4gvrHje51j22hdvMb//Jv3
C45X3sVwcD5TzXEcXF5eIpvNolwuIxQKIZvNsiJdftx+kd3RzZLjJvP7ib+ezy+MUVVVhMNh
phOORiP0er2p9mgX5MtkklWKQtlnhYmrqjrOCOOTFng5kX8Qv9XK/8zz4ItWNxYnadXEr6oq
arUaWq0WXr16hUgkMhfx+40lnU7hr57lcffVP6B8derZhjUaQjLbE5/x74AiP8Wtnj47OjrC
aDTC9vY2UqkUjo+P4TgO87iLJkzRMraIOMkTvejNp78DgcBEufxZEBkaiZ+GYUDXdRaUKYIi
EHgMh0N2yMo8ORKj0QiulChOGj9Q+pv/fFGzGr28WeIVtU39zWPOXBT0Mm9ubvDxxx+zPOV5
MOu6cCiE7XQcutrC/e0ZYvn9qfEPeh28enbI/ufr9PO7spucSyIPbzx4+fIlzs/P4TgOdnZ2
2HVuHJsWlZe4K4o488y9WPpmUQyHQ9RqNZYXTruBCEVRmGWJsExpFFl8KHEHcIMomnhZhdzQ
6/WYt1Vs060fvs2nIP5AIIDLy0scHR092qQmotlsQtU0rKUT2DP66Fx+P/Xc9mjIKjv7iYFE
WLx4w+8SlmWx2KW9vT0kEgnc3t76motVVWVmSi9rimjZ8wPJ+Y+tTk1VMWzbnkqZJemBqmE8
Fmx2+Ald5mcRwnHb0kR4WSxWBSrtfnFxgfX19bk8v4simUzi+fMXKJUbyOcySKkDDPuTXMuI
JVGq1CY+c1vslAtACTr8QuDzBBxn7JuhwEWKiBRPgOEtKJIkeRYHI/i930UlAD+I7YgMgwoV
rIpRTbAHkZD5BeE1WP6eeSbCa7F42ZrdrBWPBSWXn5ycQNM06Lr+ZDX1x4rZmGupqopRtwF7
ouSLjLuHKgB3c6DXvBDRi7oaiYl0LsP5+Tnq9ToURWGVtQmmaaLT6WA4HLJQ9UAgMFUSRpT5
3cazKoKc1daqzz+QSqWSIyq7Uxe5iCAid6bF4AcqquVmKnMTxejlun3/GAQCAdze3rJSL+TJ
XDVarRbevvkB1UoFv/3iE0iShEq1gdtyA7flJmRNx/b6Gj578QyaNl4kotjnRxD0PREn/9u2
bVY+pdlsotVqYTQaYWdnh/l2HMdhBoDBYIBGo4FwOIxUKsVyQMQiXW5YZdmTp2B4flBFju8H
UfnlIZpR3bAMka065IFAnu5FlN55QHNgWRZOjt9ibzuLbPp9+cd0Ko5UMoaPDx1c35Wws7eD
wcBEIPBeLPQbj5t5mj7n54pEIUkaR0FS1O/Z2RnW1tYQj8dZznelUsHW1hY2NjbgOA7q9TqO
j48xHA6xu7vrKnLMWpTLYh7C13UdsixPKcHLYCIYzgtuplH+Zx4OIEkSiy4VP/dSxJ9K+R2N
Rtjf38f9/b1v28v0S2cbf/3110hEA9BUFfFYdIp51OoN5DZ2EI/HEQwGWd1/N2eTmEboNkbx
ffD/k4JMpV1+/PFHnJ6esrMWyKZOukMsFsPR0RE2NzfReed59mt/2fkSzzeYF6sMpFP5Sfdb
vW4Pu8gDO8642JWoAM8iwFUSP6/0nZ2dsXLrfmOeF47j4OrqCpeXF9BUFfnNTWDUdr221+uj
YzrYz2YhSRIz9/Hbv5v+47YI+OvEGqv0zLyodH19jaOjI3buwg8//ICtrS1mdSHzI5lXj4+P
kc1mmdd1Fua1GAFgJXcWtebQ6aKrAPMDLLOi5nlY/mVQCqXbd273rYr4qVxjrVZDu92GJEms
to/b7uU4DjvbbBHUKkV8+nIXpjnAYNhFIjEdEVoolQE5iE8+GZ8XYNs22u02i0D1Mg/PM9e8
aMQzM1VVYRgGisUikskkK1xGR9ZSHgaNh/qjRXB6egpFUVhovNdC8NMj3WDb9sotb4tCJUKb
V4yZpTO4cSsvxcaLyJ/C3n96eoqNjQ2kUinYto16vY5Go8FiZ0hxPDs7RSQcxNDsYmQBH33y
ORzH8Y1bAsZildnvvot/D8Lt6uFwBMsJ4NWLl+wzqqQHvOfWfhxxHuUYmFw4mqbh9PQUiUQC
0WgUpmkiEomwKt+mabJTOqnsOukQyWQSmUwGvV4Pb9++RS6XY6Uavawxsxbrqv0tj8GUJ9jL
y+t1jd/n/L2iBehDafmyLKNSqWB3dxcAGPdyc9e3220EFAcbmRgUJQnLsnD847co11r4+ONP
sL6eG7vP353UWCgUsLm5CUVRUKmUMeudNpotpNLrE5+NRqMp86TIlESdiK6h73jwxEU+gEKh
gGw2C8MwmOJomubEtWQ2bbfbTDkmDk3/v3z5EhcXF+h0Osjn874m8ln4uSyCCSsQb0mYh7uL
8Nque73ehCVhkTiUx0JRFBY2PEuGrddr6PZN9PsmwuEQFEXB3k4e4VAVN9dXMIwg3vzwNWRF
gzUaYnsrh6//8/fQtAB0zcGrFwe+7bc6fewdZSY+i0QiqNVqiEQiTDxst9ssWSgSibBreX2N
wM81vzsAYL6OnZ0daJqGXq/HrhcJl3eU8Uov9UHK/c7ODt6+fYt6vY5wOAxd1ye8v35c/+cI
3x3A7fN5nSG0mFqtFsQzCD4U8QOYkm39sLW1/e5YpsnPI5EQRtBxdvIjXjybjOd5th9yJUwR
42uUKbMuja/RaCASiaDdbjP/BIloYhDcrHfBW89I/hetb16m1FkFp4bDIV68eIFyuYybmxso
ioJIJIJ0Ou1bf2ceM/lPgYnSiPwA+Umcl2Pz1/DtiMQ/S35dBH7jogUYjUbntjS4jS1oGGjW
HhAJBZbWWRzHgW646xGpVArJZBL39/dIp9MsKScej7Oz0tzqeXpZ5SRpHONEYcEAXO/hn5fE
GcMwphRTflFQKmssFsPe3h477vbk5GSihPwvBbI4KeLWRwTsVvPRTW7lP6dMJbfrVgGxPxGq
qqJarSKRSMwtq1YrZaiqMlEPFQCeH+1iPbv2qLG2W9NVCQhUVYPn9pIkIZ1OQ5Ik1Go1VKtV
9p1IuDyRUhLKt99+y8Kl+fv4+0WxaV6zJIlEtm0jm80iEong/v6eLQKiG96L/3Pj/sC7aFAv
YuYhErgbwYuLRdM02LbNan66LaRlMWvMlOAejUanrBUi8fAvJpNdx5uTS1xcl3BfaqLrksy9
LALaYnkQ1K+iKKxmEs2l23jomSjUIZVKTdnvRescvwCoYodfjq0oDdi2DdM0kc1m0e/3GdHr
7wp50XnRVFHw5waVf5h5nWIi4dFvNwtSLBZDoVDA+vr6k8j+XmZZTdNwe3uLvb29iThxL/mW
xryzs4vNzS0WJ//N119BkUawLAetVhsfvzpCMLj4odeSJMGylwvicpxxCimfzM5biLyeR9M0
15xuMvvy9/KHnnstLi+aIL9JNpvFxcUFdnZ2cHZ2BlVVkUwm8ebNG4RCIWxtba089OSxUAFv
Yp+1XbpB3O6oLgzJsPMqpH7w0jVobJqm4e7ujp0BzF/nBf57Ig5FUfCnv/kzmKaJYDCIm+tr
9M36UgtgPEZ55vy5IRgMIhQK4e3bt+xIVzJTuulUgUAA/X4fzWYT+Xze8znpf/L+ehE/f62X
wk9V9RKJBL755ht89NFH0DQNlmXh5cuXrM7Uzw1TkWZe8poXpwfcD8Kg6zqdztSW+piJ8NM9
ZFlGIBBg8jtVepuX4Nx0IapwbVkWdENHo9l5BAdzlnbhO46DZ8+eIZfLscJdXjuxrusoFot4
/vy5p7OKXzR0/tis3A5edHRbSHTqD+32VF+VGB6dbL+IMeWpIRWLRUe0/riVwuYHJJrQvCI2
Kc5cdDrNsgK5LUL+BbuBintRmcZcLjcR9sv3O2uCxfHx4kKxWEC7XkRuPeN1uyfa7S6GMJhT
zg+iT4XHcDhkp0Ymk8mJ7zRNY+EeoVDIU+TodrusDlS322XOOC9fjlfZGrdF2Ol0JvwXFJJt
GAYMw3A96EPsJxqNutYTWjXmijX2UohnHWZQq9UmiJ8Iax4O6mZ9ciMGOtCiWCyiVCphd3cX
6+vrjPt46QiL9M2PfTAYIhqNzGhhErZto1Aso/hQwWg4O/bFz8QJjIk8k8mwqt2FQgHlchmF
QgEAUCqVEI/HWdU48T0RoZfLZXYCUKlUmmJ+fjqg17uoVquIRCITXmLHcRAMBtk4+RL5okjI
M6tFiycsA6lYLE48JU2Cm2K8KGq1GuNQi9j+590CZVnGYDBAsVhELpdjpa8B/3Ity2yx70Wi
Ed6+/ga72/nZN73D3X0R8XQe6+s5XF9fY2dnZ2b/fjsAD9KpJEnCyckJO8UGANliDEUAACAA
SURBVHZ3dyccaf1+f8I07TgOy9FuNpsIh8PsWpEwvSyDFJdPha8oDZO/h67TNA2Xl5eQZRmJ
RAKhUAiDwYClOVJuM4lxfIL9Kn1HPFSRKNwekh+A1/duWDZ1bV7iVBQFxWIRe3t7LGbFDY8l
fh6qqmEwtBdiDIPBCLFYHKqqYmtrC+VyGZmMvwg1b9v8OI6OjtDpdBCLxSBJEl6/fo1EIoFa
rQZJknBwcIBgMMgOKuRFu3g87krwXjso9UkyPlWLBqaZD+0GlmVhZ2cHlmXh/v4etj0+LLHf
7+Pq6ool31iWNVfo9Sog08PwsrE4+W7KoZ84Q6UtUqnUxD3zYN4XL0kSM935VUPjr38M8fPi
wVp2A2Uhkd0L3W4PSiDMOC+VlX8qUNiJruv46KOPEAqF8PLlS+zs7OD169fodDoshocOIwTc
rUPi/yIjqdVqME0T4XCYFaTyKqVJi6DX68GyLGxvb6PX6+H8/ByFQgH5fB6VSmXqPi+lG1hN
mRy5Xq/j8vISkiSxknHAmHu7HYxHD89bBJrNJhqNBmq1GqvBTkVvy+XyTMsHL6fO+0CyLDPn
EHEzghsnW5VlQZZl7OzsQjViuC8+zLzeMHRYwy4e7i/ww/d/wMnxW1xenKBem28BLQp6Rqqo
RqENwWAQv/rVr9BsNvHjjz+y0oFUSlCEH9MiZvn69WuEw2FcXFwwWhCvoQpvZ2dnLOTctsel
1dPpNHZ3d7G3t4discjyM8iZNitjbBVMT202myiVSsjn8ygWi7i7u8Mnn3yC77//Hqqq4vnz
52xrI9Tr9Qk5j7fzA+Noxmw2y9zgrVaLHZa3CtBDkfwoTrzbVk3fraJfANjd3cfJ8QhnF7fY
29nwNAbIsoy9nbG+UG+00O+38fJoB8fHr/HFb/7i0SZhwD9NkpJdKD+Ywpjfvn2LSCTCnF9u
uxL5CNzmzbZtdibcYDDA27dvIcsystksbm5uMBgM8Mknn+D+/p6JSbxirCgKy0Ljo08Nw0C3
22WFC/L5/EQRtUUYpDgn4g4GAGoymWQXk82eDmUOhUITcjwVKgoGg77ELIbwUpTjrMJL80CS
xqEBZ2dn2N3d9XR0uVk9HgO3cR49ewbT3MHxj3/A9mbW9Tn4CU/Eo0B8zExk6X1K4LJweya/
MVB8v6qqePXqFSzLYuLHYDDw9Jl4zR1FrBJdbG1twbZtJJNJdDodVCoVBINBVKvVCUYlerHJ
0VgqlViF7m63yypVxONxNm7aVWaN0UtfFc3gaigUwvn5OTvhhQ4SC4VCzE4MgFUdo+ylReH1
shblgKqq4uLiAtvb28wCIrYvcn0vDrYKsUjXdUDR0emM7eq3dwWkkgnEYhE4joOT82soioa9
7fWJRRmNBFEqFZHPbz6qfz/wegv9D7wvskUnd15dXSGfzzPm57ajuH1GIguFQVDS083NDbLZ
LMLhMJrNJtbX16c4Mr8TUAg4xQuRrgQAl5eXrEYoHb9F5zgTbVLpFv5de1nR+IgEx3Eg3d/f
O7zr323bo1P1RFFoEdDZwDQgTdPYaqYjWGeBFF/aVdyUX7eX5ZX3S886D7wWS7vdxu/+9R/x
J59/hEKxjGa7j26vh88/eYbL6xIOjl6g2+1g1K8jHns/f6fn1/js13+2VFWEReBnTiVZezAY
4Pb2Fvv7+yy4jbf60RyJZ0JTjBUf6Eb307lzbuA5cbvdhq7rbCfkzaaSNC7pcn5+jr29PZyc
nLDKFpIk4fvvv0cgEEA6nUYqlZooHcmPk+8TeH9eAYDxAhAv5nNT2+02HMeZOr1lGVBZdDo4
u9PpsAfP5XJTi0AMv7ZtG9fX1+zwDpGweSLlv1uFN9FrAXS7Xfzwhy/H4o0aQTweg6Ko+O7b
r3H0/AXy+U388MP3WE8FJ5LsSw8VBKMZ9iw/BYgBkHhSKBSgKAqrDwRgomQiz2FlWZ4qc88v
GlHmdkO/32f1SUWzK/3WdR2NRgOapqHT6aDX67GdR5IkJJNJFItFdLtdJJPJifOpaZxEO+SA
q1Qq6PV6ME1zsiwKAJY55DgOqxezquJUyWSSHacai8WwtbUFx3FQLBbZJEuSxGzB5XJ54rBt
SZKQy+WY04SHm916VfATlcaWs/H2a+gBZDLjE3f+y9/87Xvug/e7qiRJuCuU0Gj28Kv9V1P9
PMX4vUD9jUbjEyg3NzfR7/dxejou565pGkKhEEuK5xlJvV5nMVL83PAKuJuSToyV9I1AIDAl
r/PXU2L+/f09wuEwtra2UKvVMBwOoWkaBoMB1tbWoCgKqtUqqtUqqyhN4lksFsP5+TmTOh4e
HvDpp5+Oj+mlHYC2nWazyZwiq3Ie8e33ej32UDR5VNd9fX0dvV4Pd3d3CAaDWFtbm1CcyVoh
2oVncZx5ZEO38c77zO12G6VSEfFYHOm16aSZr37/b3DsIYaWA1XRsL17wE7l+bmBl62BcRXm
SqWC7e1txk1vb2/ZYRSLgkQeKm9OBhOvBUC7FAU5DodDdr50uVwen/IivQ+ELJfLjE5IpO92
u2z8iqLg9vaWJRqpPOG0Wi2EQqGZLvBFQW1QbZ6dnZ2JbZVMX1dXVwgEAkwWdasb42bKEjmQ
m+NObGOeBTAvIpHIhOVLbKfX60M3gvjVrz9nL+nnCpLhCaFQCJFIBHd3d8znc3Bw4Dqvs8Se
Xq/HnHS2bU9UCSFCd1sI5Dfg26FCB3wINxlpRP2FTj2lxUOFgHu9HlQ+ply0GtBDPQa8UsOH
3fIYjUZIJpNIpVJsS3bDLO7tNnnzmgqfCo7j4Ld//leQZQmKorId75cC2nE3Nzchy+Nq0yRi
8AdrUPExx3EmRBxZlllUMCX1EK25MSb+t5efg3wbYslGABNzyzNvxxkH17XbbUSjUVZinhmh
+YwgvoFl4LaIbNvGzc0N9vb2XAmct+iIDy5yFq/SLfPIz/M+0zy7xLzgRQqSe6m+0IeW+5eB
4zgsMX99fR2Xl5dwnHG2nyzL7Pf19TWAseJKle7evHkDYFyHiXKzxXAJ/v267So8PdD9uq5P
7fRu4+Y/l2UZtVqNhWE4jvM+I4yIdBmRh3+JbnZXWZZxeXnpSfziQ7hNgti2l2jj9/+8z/DU
SKfTeHh4YMrbLwXktd3a2gIwFjlGoxEuLi6wu7uLXq+H58+fo9fr4erqCvV6HYeHh6zS3OXl
JQzDQDAYZIcQ8ic8ur0/3qokyzK63e6EmL7Me+OlDBmY5KjLEL/XPeTCPjs7w/b29kxzpFdb
fEkP4gLzEP+8EyPanleh9/iBQgZOTk6erI+nAsnSw+GQpbvm83kUCgXs7u6yo1C3t7ext7eH
brfLDrXY399HLpeDrutsMQDTdCfOvSjiiO9p3nflJn7LIndd5cuXJAmXl5c4PDxkhDvrep4Q
/cAvhlXkGItjeGpI0jg8+eFhdkDdzxkU7EYHrpOzjM5f6HQ6jMFSyLqu66wcO4mBwPR74EHv
mkIr3GjEa0HwdFUul9Hv99lnzArk1ukyoDZkWcbDwwM7keQx4oXb+LxkPq/vxDGu8pmXgWma
uLm5wdHR0c9eB5gFPwZEZm/enE3iNh9mIxpjvNqlhH9RPKJ2RfBtOY6DRCLBDtgbDAbjwlg0
oGXh9gL5DKF5XzAv5ojijviZCK/KZ25YZvtcNXRdRzqdxu9+97uJk05WsaP9nLC/v8/OIiBY
loVUKoWrqysUi0WWRUaWJNIb+b/dpANRHPbzXUnS2AFHwZ9ra2tIp9PvM8IWicWnjugeP1Pj
MgrKot95fe63Y/xUhA+Mx1KtVicSQwqFArNjN5tNbGxsTIQZ/FIx9oP0UKvVEIvFmByuKAr2
3mXynZ2dIZfLIRQKse/IlErFdx3HYfnLZOsnzOOPkCSJOWAvLy+xtrY2DoWgBhZVgL1kLQIl
NtB18xD2qkUB/pmWXZBPAcdxcHt7i2w2i1QqxXYD0zTx5Ze/h20PIUlDXFycY309h1qtivX1
HNLp9Er6/9CmV9oFGo0GyxKkiFRZlrH/7riqZrOJdDrNiu4CYJYy2hEoAcrPbAp4i8ikm9BC
k+7u7hxyEPBJ0TxRuikkvAhBWxEfeUd1OVutFrLZ7ETmEW/z93oQvq/H4qcUdUTQ3JEfgFCv
13F6egLDUJDLZd+Jpc674r4RPDxUMBw6ODx85nq2wc8ZJNbd398jn89PmX4laVzMt1KpwDRN
bG5uwnEc1Go1FppPR73Swd4UJUDiIoVC8E44N+i6jlKphFwuN2bQd3d3DsVkRyKRKbHGzzcg
ymJ8NCnw/mii+/t7Zh5zHIfF+PCFmJ6KI60qkG8VcFPcHMfBxcUFGo0ytt9VmvBarKY5QK3W
xUcfffTBxvxYSNI4dojqARmG4RlWz0chA2BVJAaDATY2NlAoFCBJ44oR5GzjZf7z83McHByw
nAaaa9IviEbfvHmDg4MDXFxcTFqBeH8AH3EpWkzmdTjRNkeVwghXV1cse0i8f9Xb8zK+jacA
v8jpd6fTwenpWxiGhu3t/MxxBgIaut0mi4SchZ/ayzwajXB/f49MJuObH0AQlX/LsnB4eMiY
JJ+M1ev1cHp6ivX1dbRarYnoUNG/cH19jcvLS7x69QqqqqLb7eL09HRcQIwSYsT4bkqHpCAk
kWvxvwl+1hUigEAggJubG2xubn6Q0hc/B/FH3OHq9TrOzk6g6yry+fWFxtft9vDDD2/xd3/3
vyxk7v0pQMr+aDRCKBR6VEKVCIoFKhQKUFUVmUyGBVRSDnoymUSv18P29jbC4TAuLy9h2zb2
9vbw5s0bPH/+/P0CkCSJlcgjpUOUz/08dDzcTFB0va7ruL6+ZnmoT42fegGI81cul1EsXiOb
XVsqH9g0B+h0Bjg6er7qoT4ZJEnC/f09crncytum9EgKf+71egiHwyzHgUQqx3EmijSQRWki
FigcDrMTVea1pwP+IpGbc8MtTW1V8PMmfmjwxF8ul3F1dY54PIyNjXXXuZs1Xtu2cX5+jd/+
9i+ebtArRqPRQLvdXpkFSwQfW0aLwKseqmVZqNVqLF8gEolMe4LdiJJ/WX7KMF3DXysqI8Vi
EZlM5tHeYS+ISubPAaenJ3CcAfb3tyY+X/T5W602stncB6mZuSpQ5bcPOWYvE+jFxQXLbtva
2ho72fgLZimMXnZXr53AzU8wGo2YBeiPHZIk4fT0BIEAkE5PVnFeZvE3my3s7OyuangfBJIk
YX19HZVKhRU0+ClQqVSwt7fHdAXHGUeETixLL1mfPvPbCdwsRWLBKjpEodvtzjyLii+ENC83
/zlx/WKxiIeHAgIBGZFI6tHtmeYAuh5eWXGxD41sNgvTNFGtVhEIBFaqEM+DZrPJDgKn0j+j
0Wi8A/DxJ15ESXEYfnCzEvG2/sFggHQ6jUKhwLT4QCDAFG/aYRbZHWhcHyqUeR6YpolC4Rob
G2tIpx9P/LZt4+TkAtvbvyzuz0OSxiVO0uk0q8zwIXF4eMjOK+v3+zg+Ph7vAGJMhRuRi7K8
n9fWi/jonn6/j729PZyfnyMYDLKovIODA1+9wM2J5Pf5T4mbm2usrSVXpuSPRhZSqfQvzgNM
qFarEwyWSp9/SDiOg1QqhYuLC7x48QIAxo4w/qJutztVLFVUjL1eKG/t8XvplNm/v7/P7isU
ChPJzdSPlz+Bj+/5OcT2iAgGg+j3m56FZ4HZY3ccB6VS+Z0JT0I4HGNlAn8pID8Af+I9icJ+
SrHoEV4VqC6QaZqQJAn7+/vvlWBKThAHtiiBiWY9Ek94UOViSqnjK9ER0XtVCOCJ38/x9lNi
bS2DXq/v+b2frkWoVmuIRFI4PHyFWCyFm5tb/MM//LeFQjt+yjmRZRm3t7eIxWITFTMoTmwW
gsGgLwNZFKZp4vb2FldXVxP+LTabpKB6QVSC/Uyl4uezxBoALMVuVv9ulqWfE/EDeBfAFUet
VgcwqRMVCmWcnl6xa93GPi5NP8LW1hb+8Idv8e///m9QVRuOY7Py837odrs4Pj7Gv/7rPz1p
BQqveW82m7i4uEA0Gp0rZEOEbY/PF+bzJJZBt9tFrVbDYDBAu93G1tYWvvjiCzZu0zTf5wT7
hZjy8CI4XmTxM42KsCwL2WwWhULBd7L4Npcl+qcMuhOxv3+AaHQNxWIdhUIV9/cVPDw0kE6v
IxQKz5xjWZbxT//0T1BV4C//8jfo9wfo9fqMKH7/+//A3//9308ok1R545tvvkQg4CCdTnzQ
GkSWZeHt27fo9/vY2dl5UnFtnnfZaDTQ6XTQbDZRrVanvldVdewII9nSbWt2q+o7axHQ3/zn
bqBrR6MRcrkc7u7ukM/nJ4ogud3zGOL/kLtFNptlubJ8/6ZpotlsIR4fB3eJYxq77C18/PHH
uLg4RTBo4PnzA5jmAP/yL/+Ev/zL/wJZVgCMWE3PeDyOYrGIXq+B588PWJs//niM9fV1Jk8X
CgXEYjFGnMViAbpuvEtcH2Jzc9JZ5wf+vdKxR8+fP22IxoT44iEO2raNu7s7GIaBXC4HSZJc
w25UVYU6Go1mRurRg/qZJ0UfAW858rqeXwBUt5HPDfW7ZxHw45hH/hZhWRaazSYikQgrxsSP
aRYqlQoqlfK7EvNdaJqKfD7rO95+f/BOeYyyima//e2v0el0cXr6IxRFwebmBr777htsbGRR
Kt2i1WpPEH+j0YRhhPHll1+iVqugVmsgkYjgN7/5C/aezs9PEY2GUalUAUiIxeJL2egfWz18
XpCZ3Gveh8MhyuUystnsxLviC3LxJn3p8vLSoToroiJKf7sFxbkNwCtX1w1iG/R3u91m536J
WDa2n3eqzWsyNU0TrVYLa2trePv2DRqNMrrdAf7mb/52YgHMGlO/38fr199iezvPArJm7USt
VhuSpGNnZxflchm1WsHTn+DXVrVaR7Vaw9XVLf7qr34LRZFxcXGDra29dwGPEu7vr7G1tcHe
b6lURrfbx7NnLxGP+6dk8jTRbDYRCASYHvlUO+0sOqxWq6zCoMioyuUycrkc801VKhWo4jm+
fh1SQ34xQfOIPm7tAuMQ7EKhwGo58u0uC+rDq5qcF+r1On744VtsbGyh3W6gWCxjOBxXrKbA
rnnGpSgKOp0++3vWfY1GE0AA+/tjp1c8Hsf19QXC4b7rTu3XViqVQDIZx+HhHrs2lUqg3a7A
smx0Ol3s7m6x7yRJQi6XheM4OD8/x8uXr+aK43ec8TnAlME1wWFXsBDcuLcXDYr0xzNyYCxt
UGU7RVHGC4DfVsgx5ZasMovbiZ0vqnCSp7her7P6k4+x8riJPvNifMBcEJVKCa9ePcNgMMLm
5jZSqRQkaRzTVKlUZob4npwcQ9Pcz9lyg2Ho6HTeRzhqmoZXrz7BmzffsYyxWfCy0AHjRTEL
kiQhnY7i7dvv0Wi08cUXv0EoFHK9jh8nhRuTrZ+uWaTgAo9Wq4Vut8siPNfX1yciBkQ9gLca
8dcoisKMAVTMi45rVQFMrHJaCHSKII95X+IyxM+XwWi32wDe+yaoCjDlLo9l5PccMZlMujrM
3HajeV9EqVRANptFvz8+LyGViqJQuEGn00S73YKuB6BpKgzD8K3e8OLFS9RqNdzeXmN9PTnT
LKjrOu7uHiZ2U9u20e120Wq1PU+pn2VoWBThcAjhcAgbGxaOj98gEokikYhhNBqh0Wjh4OBw
6mCLeDw+sUMCY6JUVXWunYR/DqoIzZ8cWS6Xsba2NkH0jjMOsaHDXMR3QeNLJBIolUq4urrC
4eEhS5tk+QAEOlHQb3CzHmBe4ifiJs5xdXWFRqOBTz75hJ1XJvoGotEoc6R0u11cX18jFApB
ksa5ovOOwW9BjKtYS0gmIwDGBJfNZpDN0uHW4xc8HI5wfPwjfvObP/fsp1Ipv1OgoxgOR3PZ
xcXSj4FAAHt7RygU7icWwKxnXIX4oSgKMpkE6vUGgCA0TUK5XEQ0GmO7H42DHJy9Xo9ZuxzH
YecHB4NBJJNJNjaKy6faUbZto9VqwbbHh+5FIhHGwSVJQiwWQ6vVAjCmg3K5zPLOW60WNjc3
PZ1sZ2dnyOfzLCAvmUxOR4PSwBRFmXnKuyga0UDFc7vcLDpUCMm2bZyenqLRaOCzzz5DLpdD
sVhkZ0KJCg+AiQcMhUJ48eIFbm9vYds2dF1nZsfr62tomjYlosxjwZEkCcOhjUajyUyVbri8
vAbgX9x2NLJQKt0jHo8ikfC2/PBQVXlih1NVFRsbeZRKJXQ6XYTDoYWIf1GrlQjD0JHLvR97
MBiaIH6StbvdLra2thgNkH7Z7XahaRqq1Srrv9PpYDgcotfrYW1tDY1GA8PhEOl0mpU/EZXd
UCgETdOY7yObzbLdgMqteM0DnWSfTqdxd3eH09NTHB0dTS8AYFzKms5w9YIkjaP7qDwFlbWI
RCIwDIMNzDRNRrR0RgA5KKgUy8HBAQzDQKvVQiqVYuUvSB/hH8QN+fxYNrYsCw8PD3Ach516
eX9/j42NDc97CeKCjkRCiMW8zXqmaSIWS7PAKjqgjXYhgm3byOUyvgtJxPZ2Hm/e/AjbHldR
ePlyXAUik8liNOosJO48heOPRA5eHpckCf1+fyIyl/qnE13W1tZwf3/PiD4ej7Nan/wpkfzz
iDqgpmnIZDJoNpu+OimvhNu2zbIcTdNELpeDZVm4ublxXwA0cBGiqBQIBHBycsJMYCSuEDGQ
WMIfpEDnjpGDolqtsrIplUoFn376KVso8wZD8btDJpNhn9/e3noeRcTLrvS8fI0ZTdNxcXGD
/f1t1/t1XUe5PK404DgOfvjhe/R6PSSTCcRiCQwGJkqlEj7//Fd4/bqIWCw6N/cdMxcF4fB4
AX799VeIRmNoNmvY29ti4xWfn8dTED7BMN6LLDyX5k2gbmZ0SZKQzWbRbDYRCoVYUNza2trE
PbPMxIqiMFHKD0T8Nzc32N5+/x6pRM/Gxob7AqDOFUVBNBplMpyu6+x0dv5Yy08//ZQ9AMl1
BPFFUWEj6mNtbQ3RaBSWZbGzalVVRb1enzkRs0CyIx3uLZ46KY6R/+7Fi5d4+/bNu0SU6SSU
8S6T5p7Pxs7O+jt5tIp2u4NQSMPr19+j01kspkWSJGQy7xXJ7W0dlUoVOzv5iWvcxvTU6HZ7
MM0R0uk0k/cBsJ2aKq752epJthe/5/01bhDfkxcT4C2YFxcX7AAPsS1XHYAao9PgKWmFGnYc
Z+JQYscZ1xCirb/dbk9xbp6QydJDoD7EB4nFYqjX649KnVxfX8fd3R2rGhCPxz39F/Sbn9TD
wyN8++1X2N19f5QpWUEURUa1WoZpmjg7O0EgoLA5SCYTSCYTbM5keT7Z3wuyLCOTmT58b1HM