-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocessNightlights_annual.py
418 lines (385 loc) · 17.2 KB
/
processNightlights_annual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Import required modules.
import os
import numpy as np
import math
import datetime
import sys
import csv
from osgeo import gdal, ogr, osr
from multiprocessing import Process, JoinableQueue
from threading import Thread
# Directory containing input data.
in_dir = r'PATH'
# Set to True to read raster to memory, for some speed gains (will require
# >20Gb RAM per core). Otherwise requires up to 5Gb per core.
in_memory = False
# Set year to process.
year = '2015'
# Number of cores to use, may not provide performance gains if in_memory =
# False, and actually reduce performance if SSD speed is limited.
cpus = 1
# Dict with input/output file paths and unique IDs.
zones = {
'gadm': [
r'PATH SHAPEFILE',
r'OUTPAtH CSV',
'object_id_'
],
}
# Determine total extent of raster files.
xorigin = None
yorigin = None
xsize = 0
ysize = 0
locs = []
bboxes = []
in_files = os.listdir(in_dir)
in_files = [i for i in in_files if i[10:18] == '{0}0101'.format(year) and i.split('.')[-2] == 'avg_rade9']
for in_file in in_files:
loc = in_file[28: 35]
ds = gdal.Open(os.path.join(in_dir, in_file))
geotransform = ds.GetGeoTransform()
projection = ds.GetProjection()
xmin = geotransform[0]
ymax = geotransform[3]
cell_width = geotransform[1]
cell_height = geotransform[5]
band = ds.GetRasterBand(1)
if loc in ['75N180W', '75N060W', '75N060E']:
xsize += band.XSize
mincelly = 0
maxcelly = 17999
else:
mincelly = 18000
maxcelly = 33599
if loc in ['75N180W', '00N180W']:
ysize += band.YSize
mincellx = 0
maxcellx = 28799
elif loc in ['75N060W', '00N060W']:
mincellx = 28800
maxcellx = 57599
else:
mincellx = 57600
maxcellx = 115199
if xorigin is None or xmin < xorigin:
xorigin = xmin
if yorigin is None or ymax > xorigin:
yorigin = ymax
bboxes.append([mincelly, maxcelly, mincellx, maxcellx])
locs.append(loc)
bboxes = np.array(bboxes)
locs = np.array(locs)
yend = yorigin + (ysize * cell_height)
xend = xorigin + (xsize * cell_width)
# Function to intersect
def process_nightlight(in_queue, out_queue, layer_name, bboxes, locs, yorigin, xorigin, yend, xend, ysize, xsize, zone_id):
# Open input layer and set up transform.
in_ds = ogr.Open(layer_name)
in_lyr = in_ds.GetLayer()
gadm_sr = in_lyr.GetSpatialRef()
wgs84 = osr.SpatialReference()
wgs84.ImportFromEPSG(4326)
if gadm_sr != wgs84:
transform = osr.CoordinateTransformation(gadm_sr, wgs84)
else:
transform = None
driver = ogr.GetDriverByName('MEMORY')
gadm_ds = driver.CreateDataSource('temp')
# Read features and check for intersection with raster.
data = {}
for feat in in_lyr:
oid = feat.GetField(zone_id)
if oid is None:
process = False
geom = feat.GetGeometryRef()
if geom is None:
process = False
else:
if transform is not None:
geom.Transform(transform)
xmin, xmax, ymin, ymax = geom.GetEnvelope()
process = True
if ymax > yorigin:
if ymin > yorigin:
process = False
else:
ymax = yorigin
if ymin < yend:
if ymax < yend:
process = False
else:
ymin = yend
if xmin < xorigin:
if xmax < xorigin:
process = False
else:
xmin = xorigin
if xmax > xend:
if xmin > xend:
process = False
else:
xmax = xend
# Determine raster cells covered by the polygon envelope.
if process:
cells_left = math.floor((xmin - xorigin) / cell_width)
cells_top = math.floor((ymax - yorigin) / cell_height)
cells_right = math.ceil(((xmin - xorigin) + (xmax - xmin)) / cell_width)
cells_bottom = math.ceil(((ymax - yorigin) - (ymax - ymin)) / cell_height)
if cells_left == cells_right:
cells_right += 1
if cells_top == cells_bottom:
cells_bottom += 1
if cells_left < 0:
cells_left = 0
if cells_top < 0:
cells_top = 0
if cells_bottom >= ysize:
cells_bottom = ysize - 1
if cells_right >= xsize:
cells_right = xsize - 1
# Generate new extent from cells.
xmin = xorigin + (cell_width * cells_left)
xmax = xorigin + (cell_width * cells_right)
ymin = yorigin + (cell_height * cells_bottom)
ymax = yorigin + (cell_height * cells_top)
# Create in-memory layer for zone.
gadm_lyr = gadm_ds.CreateLayer('temp', srs=wgs84)
defn = gadm_lyr.GetLayerDefn()
out_feat = ogr.Feature(defn)
out_feat.SetGeometry(geom.Clone())
gadm_lyr.CreateFeature(out_feat)
# Convert zone polygon to raster.
driver = gdal.GetDriverByName('MEM')
dst_geotransform = (xmin, cell_width, geotransform[2], ymax,
geotransform[4], cell_height)
dst_xsize = cells_right - cells_left
dst_ysize = cells_bottom - cells_top
ds = driver.Create('', dst_xsize, dst_ysize, 1, gdal.GDT_Byte)
ds.SetProjection(projection)
ds.SetGeoTransform(dst_geotransform)
band = ds.GetRasterBand(1)
band.SetNoDataValue(0)
band = None
gdal.RasterizeLayer(ds, [1], gadm_lyr, options=["ALL_TOUCHED=TRUE"])
# Read zone raster to memory and determine raster overlap.
band = ds.GetRasterBand(1)
mask = band.ReadAsArray()
band = None
ds = None
loc = None
cells = None
bbox = (cells_top, cells_bottom, cells_left, cells_right)
# Query raster grid intersection.
if not in_memory:
test = ((((cells_top >= bboxes[:, 0]) & (cells_top < bboxes[:, 1])) |
((cells_bottom > bboxes[:, 0]) & (cells_bottom <= bboxes[:, 1]))) &
(((cells_left >= bboxes[:, 2]) & (cells_left < bboxes[:, 3])) |
((cells_right > bboxes[:, 2]) & (cells_right <= bboxes[:, 3]))))
loc = locs[test]
xsize2 = (cells_right - cells_left)
ysize2 = (cells_bottom - cells_top)
# If intersecting a single raster, adjust cell counts
# accordingly.
if len(loc) == 1:
if loc[0] in ['00N180W', '00N060W', '00N060E']:
cells_top -= 18000
if loc[0] in ['75N060W', '00N060W']:
cells_left -= 28800
elif loc[0] in ['75N060E', '00N060E']:
cells_left -= 57600
cells = [(cells_left, cells_top, xsize2, ysize2)]
# If intersecting multiple rasters, calculate extents for each.
else:
cells = []
for l in loc:
if cells_top < bboxes[locs.tolist().index(l), 0]:
top_ix = 0
relative_top = 18000 - cells_top
else:
relative_top = 0
if l in ['00N180W', '00N060W', '00N060E']:
top_ix = cells_top - 18000
else:
top_ix = cells_top
if cells_bottom > bboxes[locs.tolist().index(l), 1]:
if l in ['00N180W', '00N060W', '00N060E']:
bottom_ix = 15600
relative_bottom = ysize2 - (cells_bottom - 33600)
else:
bottom_ix = 18000
relative_bottom = ysize2 - (cells_bottom - 18000)
else:
relative_bottom = ysize2
if l in ['00N180W', '00N060W', '00N060E']:
bottom_ix = cells_bottom - 18000
else:
bottom_ix = cells_bottom
if cells_left < bboxes[locs.tolist().index(l), 2]:
left_ix = 0
if l in ['00N060W', '75N060W']:
relative_left = 28800 - cells_left
else:
relative_left = 57600 - cells_left
else:
if l in ['00N180W', '75N180W']:
left_ix = cells_left
elif l in ['00N060W', '75N060W']:
left_ix = cells_left - 28800
else:
left_ix = cells_left - 57600
relative_left = 0
if cells_right > bboxes[locs.tolist().index(l), 3]:
right_ix = 28800
if l in ['00N180W', '75N180W']:
relative_right = xsize2 - (cells_right - 28800)
else:
relative_right = xsize2 - (cells_right - 57600)
else:
if l in ['00N180W', '75N180W']:
right_ix = cells_right
elif l in ['00N060W', '75N060W']:
right_ix = cells_right - 28800
else:
right_ix = cells_right - 57600
relative_right = xsize2
xsize3 = (right_ix - left_ix)
ysize3 = (bottom_ix - top_ix)
cells.append((left_ix, top_ix, xsize3, ysize3, relative_top, relative_bottom, relative_left, relative_right))
data[oid] = [bbox, mask, loc, cells]
in_lyr = None
gadm_lyr = None
in_ds = None
gadm_ds = None
process = True
# Read dates from queue.
while process:
date = in_queue.get()
if date is None:
process = False
else:
year = date[:4]
in_files = [i for i in os.listdir(in_dir) if i[10:18] == date]
# If working in-memory, create empty arrays and populate with tiles data.
if in_memory:
cf_cvg = np.zeros((ysize, xsize), dtype='uint8')
avg_rade9h = np.zeros((ysize, xsize), dtype='float32')
y = 0
ystep = 18000
x = 0
xstep = 28800
for loc in ['75N180W', '75N060W', '75N060E']:
in_file = [i for i in in_files if i[28: 35] == loc and i.split('.')[-2] == 'cf_cvg'][0]
ds = gdal.Open(in_file)
cf_cvg[y: y + ystep, x: x + xstep] = ds.ReadAsArray()
ds = None
in_file = [i for i in in_files if i[28: 35] == loc and i.split('.')[-2] == 'avg_rade9'][0]
ds = gdal.Open(os.path.join(in_dir, in_file))
avg_rade9h[y: y + ystep, x: x + xstep] = ds.ReadAsArray()
ds = None
x += xstep
y += ystep
ystep = 15600
x = 0
for loc in ['00N180W', '00N060W', '00N060E']:
in_file = [i for i in in_files if i[28: 35] == loc and i.split('.')[-2] == 'cf_cvg'][0]
ds = gdal.Open(os.path.join(in_dir, in_file))
cf_cvg[y: y + ystep, x: x + xstep] = ds.ReadAsArray()
ds = None
in_file = [i for i in in_files if i[28: 35] == loc and i.split('.')[-2] == 'avg_rade9'][0]
ds = gdal.Open(os.path.join(in_dir, in_file))
avg_rade9h[y: y + ystep, x: x + xstep] = ds.ReadAsArray()
ds = None
x += xstep
else:
rasters = {}
for raster in ['cf_cvg', 'avg_rade9']:
rasters[raster] = {}
for loc in ['75N180W', '75N060W', '75N060E', '00N180W', '00N060W', '00N060E']:
in_file = [i for i in in_files if i[28: 35] == loc and i.split('.')[-2] == raster][0]
rasters[raster][loc] = gdal.Open(os.path.join(in_dir, in_file))
# Query each polygon array with raster array.
for oid, values in data.items():
bbox, mask, loc, cells = values
row = [oid, year]
# If not working in-memory, read raster array, or subset.
if not in_memory:
if len(loc) == 1:
loc = loc[0]
cells_left, cells_top, xsize2, ysize2 = cells[0]
ds = rasters['cf_cvg'][loc]
cf_cvg_sel = ds.ReadAsArray(cells_left, cells_top, xsize2, ysize2)
ds = rasters['avg_rade9'][loc]
avg_rade9h_sel = ds.ReadAsArray(cells_left, cells_top, xsize2, ysize2)
else:
cells_top, cells_bottom, cells_left, cells_right = bbox
xsize2 = cells_right - cells_left
ysize2 = cells_bottom - cells_top
cf_cvg_sel = np.zeros((ysize2, xsize2), dtype='uint8')
avg_rade9h_sel = np.zeros((ysize2, xsize2), dtype='float32')
for loc, cells in zip(loc, cells):
cells_left2, cells_top2, xsize3, ysize3, relative_top, relative_bottom, relative_left, relative_right = cells
ds = rasters['cf_cvg'][loc]
cf_cvg = ds.ReadAsArray(cells_left2, cells_top2, xsize3, ysize3)
ds = rasters['avg_rade9'][loc]
avg_rade9h = ds.ReadAsArray(cells_left2, cells_top2, xsize3, ysize3)
avg_rade9h_sel[relative_top: relative_bottom, relative_left: relative_right] = avg_rade9h
cf_cvg_sel[relative_top: relative_bottom, relative_left: relative_right] = cf_cvg
else:
cells_top, cells_bottom, cells_left, cells_right = bbox
cf_cvg_sel = cf_cvg[cells_top: cells_bottom, cells_left: cells_right]
avg_rade9h_sel = avg_rade9h[cells_top: cells_bottom, cells_left: cells_right]
sel = avg_rade9h_sel[(mask == 255)]
sel[(sel < 0)] = 0
row.extend([np.mean(sel), np.median(sel), np.min(sel), np.max(sel), np.sum(sel)])
sel = cf_cvg_sel[(mask == 255)]
sel[(sel < 0)] = 0
row.append(np.mean(sel))
out_queue.put(row)
in_queue.task_done()
# Threading function to collect results and write to file.
def write_results(out_queue, out_csv, zone_id):
header = [zone_id, 'Year', 'Light_mean', 'Light_median',
'Light_min', 'Light_max', 'Light_sum', 'CVG_mean']
out_file = open(out_csv, 'w', newline='')
writer = csv.writer(out_file)
writer.writerow(header)
while True:
row = out_queue.get()
if row is None:
out_file.close()
sys.exit()
else:
writer.writerow(row)
out_queue.task_done()
if __name__ == '__main__':
# Iterate over input layers.
dates = list(set([i[10:18] for i in os.listdir(in_dir) if i[10:14] == year]))
now = datetime.datetime.now()
for zone_name, values in zones.items():
print(zone_name)
layer_name, out_csv, zone_id = values
processes = []
in_queue = JoinableQueue()
out_queue = JoinableQueue()
thread = Thread(target=write_results, args=(out_queue, out_csv, zone_id))
thread.daemon = True
thread.start()
for i in range(cpus):
p = Process(target=process_nightlight, args=(in_queue, out_queue, layer_name, bboxes, locs, yorigin, xorigin, yend, xend, ysize, xsize, zone_id))
p.start()
processes.append(p)
# Add dates to queue, and join.
for date in dates:
in_queue.put(date)
in_queue.join()
out_queue.join()
for process in processes:
in_queue.put(None)
in_queue.join()
for process in processes:
process.join()
out_queue.join()
out_queue.put(None)
thread.join()
print(datetime.datetime.now() - now)