forked from BE-PROJECTS2018/GroupNo45-Pantomath-bo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlauncher.py
187 lines (138 loc) · 5.94 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
from main_utils import realTimeFacialLandmarks
from main_utils import smile_detection
from imutils.video import VideoStream
from imutils import face_utils
from keras.models import load_model
from keras.models import model_from_json
import time
import numpy as np
import pandas as pd
import cv2
import dlib
import json
import pyaudio
import wave
from audio import audio_processing
import threading
from threading import Thread
from predictionModal import modal
def setup_logical_control(file):
with open(file,'w') as fwrite:
fwrite.write("================== Process Started ==================\n")
def start_realTimeVideo(file):
#######################################
t = 0
landmarksArray = []
smileScore = 0
row = []
featureArray = []
column = ['Outer Eyebrow Height','Inner Eyebrow Height','Outer Lip Height','Inner Lip Height','Inner Eyebrow Distance','Lip Corner Distance','Eye Opening','Average Smile Score']
#######################################
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('data_save/output.avi', fourcc, 20.0, (640,480))
#######################################
emotion_labels = {0:'Neutral',1:'Neutral',2:'Neutral',3:'Smiling',4:'Neutral',5:'Surprise',6:'Neutral'}
emotion_classifier = load_model('dependencies/fer2013.hdf5', compile=False)
emotion_target_size = emotion_classifier.input_shape[1:3]
face_haarCascade = cv2.CascadeClassifier('dependencies/haarcascade_frontalface_default.xml')
eye_haarCascade = cv2.CascadeClassifier('dependencies/haarcascade_eye.xml')
shapePredictorPath = 'dependencies/shape_predictor_68_face_landmarks.dat'
faceDetector = dlib.get_frontal_face_detector()
facialLandmarkPredictor = dlib.shape_predictor(shapePredictorPath)
#######################################
vs = VideoStream(usePiCamera = False).start()
if file.exists():
## write our code for video taking
while(file.exists()):
frame = vs.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.equalizeHist(gray)
faces = faceDetector(gray, 0)
for (i, face) in enumerate(faces):
facialLandmarks = facialLandmarkPredictor(gray, face)
facialLandmarks = face_utils.shape_to_np(facialLandmarks)
(x, y, w, h) = face_utils.rect_to_bb(face)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, '#{}'.format(i+1), (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
landmarksArray = realTimeFacialLandmarks.getDistance(facialLandmarks)
realTimeFacialLandmarks.facialPointJson(t,landmarksArray)
for (a, b) in facialLandmarks:
cv2.circle(frame, (a, b), 1, (0, 0, 255), -1)
##################################################
gray_face = smile_detection.processedFace(emotion_target_size,gray,x,y,w,h)
emotion = smile_detection.predictEmotion(emotion_labels,emotion_classifier,gray_face)
#cv2.putText(frame,emotion, (x, y-25),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1,cv2.LINE_AA)
smileScore = smile_detection.getSmileScore(emotion_classifier,gray_face)
smile_detection.smileJson(t,smileScore)
##################################################q
t = t + 1
temp = landmarksArray
temp.append(smileScore)
featureArray.append(temp)
# print(featureArray)
out.write(frame)
#cv2.imshow("Frame", frame)
featureArray = np.array(featureArray)
print(featureArray)
for i in range(len(featureArray[0])):
row.append(round(np.mean(featureArray[:,i])))
print(row)
df = pd.DataFrame(data = [row], columns = column)
df.to_csv('data_save/realtime_video_cues.csv')
out.release()
#cv2.destroyAllWindows()
vs.stop()
else:
print("No file")
def start_audio_capture(file):
FORMAT = pyaudio.paInt16
CHANNELS = 2
RATE = 44100
CHUNK = 1024
RECORD_SECONDS = 10
WAVE_OUTPUT_FILENAME = "./file.wav"
if file.exists():
audio = pyaudio.PyAudio()
print("Audio recording started")
# start Recording
stream = audio.open(format=FORMAT, channels=CHANNELS,
rate=RATE, input=True,
frames_per_buffer=CHUNK)
print("recording...")
frames = []
while(file.exists()):
data = stream.read(CHUNK)
frames.append(data)
print("finished recording")
# stop Recording
stream.stop_stream()
stream.close()
audio.terminate()
waveFile = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
waveFile.setnchannels(CHANNELS)
waveFile.setsampwidth(audio.get_sample_size(FORMAT))
waveFile.setframerate(RATE)
waveFile.writeframes(b''.join(frames))
waveFile.close()
else:
print("file not exist")
############### main code #############################
if __name__ == '__main__':
#log file is the heart
file=Path("log.txt")
setup_logical_control(file)
#start realtime video and audio capture in parallel
#start_realTimeVideo(file)
#start_audio_capture(file)
realTimeVideo = Thread(target = start_realTimeVideo,kwargs={'file':file})
audioCapture = Thread(target = start_audio_capture,kwargs={'file':file})
realTimeVideo.start()
audioCapture.start()
# wait until both have completed their task
realTimeVideo.join()
audioCapture.join()
#start audio processing
audio_processing.start_audio(file)
print("Prediction started")
modal.predict()