Skip to content

princeton-computational-imaging/scatternerf

Repository files navigation

ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering (ICCV23)

Project Page | Paper

animated

Official code implementation of ScatterNeRF. This work is being built on top of the great NeRF-Factory codebase.

Requirements

conda create -n nerf_factory -c anaconda python=3.8
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip3 install -r requirements.txt

## Or you could directly build from nerf_factory.yml
conda env create --file nerf_factory.yml

Dataset

We provide a ready-to-use sequence dataset sample, which can be downloaded here

Start the training

Both single and multiple GPU supported

python3 -m run --ginc configs/[model]/[data].gin
# ex) CUDA_VISIBLE_DEVICES=1,2,3 python3 run.py --ginc configs/scatternerf/tnt.gin --scene_name Sequence00_left_right

Render results

(Currently, only single-gpu supported)

python3 run.py --ginc configs/[model]/[data].gin --scene [scene] --ginb run.run_train=False
# ex) CUDA_VISIBLE_DEVICES=0 python3 run.py --ginc configs/scatternerf/tnt.gin --scene_name Sequence00_left_right --ginb run.run_train=False

License

Copyright (c) 2022 POSTECH, KAIST, and Kakao Brain Corp. All Rights Reserved. Licensed under the Apache License, Version 2.0 (see LICENSE for details)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages