-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
200 lines (179 loc) · 7.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import sys
import argparse
import tensorflow as tf
import numpy as np
import pickle as pkl
sys.path.insert(0, './')
sys.path.insert(0, './unity/')
sys.path.insert(0, './stable-baselines/')
from packing.packing_policy import PackingPolicy, sha_pol
from packing.packing_env import PackingEnv, mul_pro_packing_env
from packing.packing_evalute import get_file_id_lst
from packing.packing_heuristic import *
from stable_baselines.ppo2 import PPO2
parser = argparse.ArgumentParser()
# only env
parser.add_argument('--id_start', type=int, default=0)
parser.add_argument('--num_tr_pack', type=int, default=200)
parser.add_argument('--num_pro', type=int, default=8, help="num of processors,\
matters only when learn_or_evaluate is 1.")
# only policy
parser.add_argument('--learn_sha_pol', type=int, default=1)
parser.add_argument('--learn_rot_pol', type=int, default=0)
parser.add_argument('--add_sum_fea', type=int, default=1)
# both env and policy
parser.add_argument('--rot_before_mov', type=int, default=1)
parser.add_argument('--rot_before_mov_env', type=int, default=-1)
# PPO
parser.add_argument('--gamma', type=float, default=1.0)
parser.add_argument('--lam', type=float, default=0.95)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--vf_coef', type=float, default=0.5)
parser.add_argument('--ent_coef', type=float, default=0.1)
parser.add_argument('--zero_mean_advs', type=int, default=0)
parser.add_argument('--num_steps', type=int, default=64)
parser.add_argument('--noptepochs', type=int, default=4)
# whether to learn or evaluate
# contions options for evaluation
# 1 means learn, 0 means evaluate
parser.add_argument('--learn_or_evaluate', type=int, default=1, help="1 for\
learn and 0 for evaluate.")
# 1 means validation 0 means test
# for evaluating test, the files should be in the folder named final inside log
parser.add_argument('--eval_va_or_te', type=int, default=1, help="1 for\
evaluting on the validation set and 0 for evaluating on\
the test set")
parser.add_argument('--model_name', type=str, default='PPO2_1/model_va',
help="matters only when learn_or_evaluate is 0")
# 1 means yes and 0 means no
parser.add_argument('--beam_search', type=int, default=0)
parser.add_argument('--beam_size', type=int, default=2)
# 1 means yes and 0 means no
parser.add_argument('--back_track_search', type=int, default=0)
parser.add_argument('--budget', type=int, default=4)
# start and end file id for evaluation
# end id 100 for complete test and 130 for complete validation set
parser.add_argument('--eval_start_id', type=int, default=0)
parser.add_argument('--eval_end_id', type=int, default=100)
parser.add_argument('--result_folder', type=str, default='results')
flags, unparsed = parser.parse_known_args()
assert bool(flags.learn_sha_pol)
assert not bool(flags.learn_rot_pol), "Not supported."
if flags.rot_before_mov_env == -1:
flags.rot_before_mov_env = flags.rot_before_mov
else:
# flags.rot_before_mov_env can make the structure between policy and env different
# only be used for test (table 4, row 4)
assert not bool(flags.learn_or_evaluate)
tensorboard_log = 'log/{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}'.format(
str(flags.num_tr_pack),
str(flags.gamma),
str(flags.lam),
str(flags.lr),
str(flags.zero_mean_advs),
str(flags.vf_coef),
str(flags.ent_coef),
str(flags.num_pro),
str(flags.noptepochs),
str(flags.learn_sha_pol),
str(flags.learn_rot_pol),
str(flags.rot_before_mov),
str(flags.add_sum_fea))
print(tensorboard_log)
if bool(flags.rot_before_mov):
model_oracle = HeuristicModel(
sha_lar,
rot_best,
mov_best)
else:
model_oracle = HeuristicModel(
sha_lar,
mov_best,
rot_best_pos)
env_name = 'unity/envs/packit'
pack_file_names = ["pack_tr/" + str(i) + "_tr" for i in range(0, flags.num_tr_pack)]
file_id_lst = get_file_id_lst(env_name, pack_file_names)
def make_env():
return mul_pro_packing_env(
num_pro=flags.num_pro,
env_name=env_name,
file_id_lst_lst=[file_id_lst] * flags.num_pro,
rot_before_mov=bool(flags.rot_before_mov),
shuffle=True,
get_gt=False,
worker_id_start=flags.id_start,
config={
'sha': None if bool(flags.learn_sha_pol) else model_oracle.action_best,
'mov': model_oracle.action_best,
'rot': model_oracle.action_best,
})
policy_config = {
'rot_before_mov':bool(flags.rot_before_mov),
'add_bn':False,
'add_sum_fea':bool(flags.add_sum_fea),
'policy_weights':[1.0, 1.0, 1.0],
'fixed_fea_config':{
'box_fea_dim':10,
'cho_sha_coarse_fea_dim':8,
'cho_sha_fine_fea_dim':8
},
'comp_pol_config':{
'sha_pol': sha_pol if bool(flags.learn_sha_pol) else None,
'mov_pol': None,
'rot_pol': None
}
}
env = make_env()
model = PPO2(
PackingPolicy,
env,
n_steps=flags.num_steps,
verbose=1,
tensorboard_log=tensorboard_log,
nminibatches=int((flags.num_steps * flags.num_pro) / 64),
noptepochs=flags.noptepochs,
make_env=make_env,
gamma=flags.gamma,
lam=flags.lam,
vf_coef=flags.vf_coef,
ent_coef=flags.ent_coef,
zero_mean_advs=bool(flags.zero_mean_advs),
packing_id_start=flags.id_start,
learning_rate=flags.lr,
policy_config=policy_config,
restore_exp=not(bool(flags.learn_or_evaluate)),
restore_path="./{}/{}".format(tensorboard_log, flags.model_name))
if bool(flags.learn_or_evaluate):
model.learn(flags.num_steps * flags.num_pro * 400)
else:
if bool(flags.eval_va_or_te):
pack_file_name_evaluate = ["pack_va/" + str(i) + "_va" for i in range(flags.eval_start_id, flags.eval_end_id)]
else:
pack_file_name_evaluate = ["pack_te/" + str(i) + "_te" for i in range(flags.eval_start_id, flags.eval_end_id)]
_, _, _, rewards = model.evaluate(
pack_file_name_evaluate,
evaluate_first_n=None,
beam_search=bool(flags.beam_search),
beam_size=flags.beam_size,
back_track_search=bool(flags.back_track_search),
budget=flags.budget,
rot_before_mov_env=bool(flags.rot_before_mov_env))
if not os.path.isdir(flags.result_folder):
os.mkdir(flags.result_folder)
filehandler = open(
"{}/{}_{}_{}_{}_{}_{}_{}_{}_{}{}".format(
flags.result_folder,
"va" if bool(flags.eval_va_or_te) else "te",
tensorboard_log.replace("/", "_"),
flags.model_name.replace("/", "_"),
flags.beam_search,
flags.beam_size,
flags.back_track_search,
flags.budget,
flags.eval_start_id,
flags.eval_end_id,
"" if (flags.rot_before_mov_env == -1) else ("_" + str(flags.rot_before_mov_env))),
"wb")
pkl.dump(rewards, filehandler)
filehandler.close()