diff --git a/studies/db/go_rewrite/main.go b/studies/db/go_rewrite/main.go index a81ef608..e667d321 100644 --- a/studies/db/go_rewrite/main.go +++ b/studies/db/go_rewrite/main.go @@ -1,13 +1,19 @@ package main import ( - "studies/runner" + "studies/things" ) func main() { - runner.Run() + // runner.Run() // times.DebugPrint() //times.DebugPrint() // Wait forever. // select {} + + tp := things.NewThingsProvider(false) + tp.FilterOnlyPrimarySignalSecondarySignalAndCycleSecondDatastreams() + tldThings := tp.Things + println("Processing", len(tldThings), "things") + } diff --git a/studies/db/go_rewrite/notebooks/meta_stats.json b/studies/db/go_rewrite/notebooks/meta_stats.json new file mode 100644 index 00000000..c6c0e65f --- /dev/null +++ b/studies/db/go_rewrite/notebooks/meta_stats.json @@ -0,0 +1,5 @@ +{ + "cs_observation_count_total": 961136904, + "ps_observation_count_total": 1171647438, + "things_with_observations": 18104 +} \ No newline at end of file diff --git a/studies/db/go_rewrite/notebooks/studies_charts_meta.ipynb b/studies/db/go_rewrite/notebooks/studies_charts_meta.ipynb index f8b85f00..f2286d1d 100644 --- a/studies/db/go_rewrite/notebooks/studies_charts_meta.ipynb +++ b/studies/db/go_rewrite/notebooks/studies_charts_meta.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -50,7 +50,7 @@ "import collections\n", "import matplotlib.gridspec as gridspec\n", "\n", - "with open('processed_things_2023_11_21_2.json') as f:\n", + "with open('processed_things_2023_11_24.json') as f:\n", " processed_things = json.load(f)\n", "\n", "# Stats\n", diff --git a/studies/db/go_rewrite/notebooks/studies_meta.ipynb b/studies/db/go_rewrite/notebooks/studies_meta.ipynb index c1bf5e5a..81db85dc 100644 --- a/studies/db/go_rewrite/notebooks/studies_meta.ipynb +++ b/studies/db/go_rewrite/notebooks/studies_meta.ipynb @@ -60,12 +60,36 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'PrimarySignalMissingCount': 668, 'CycleSecondMissingCount': 163, 'TotalSkippedCycles': 0, 'TotalCyclesCount': 8, 'GapsBetweenCyclesCount': 0, 'TotalRemovedCycleCount': 8, 'TotalInvalidCycleLengthCount': 1, 'TotalInvalidCycleTransitionCount': 0, 'TotalInvalidCycleMissingCount': 8, 'Metrics': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsRelativeGreenDistance': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsSP': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MedianShifts': [[-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999]], 'MedianGreenLengths': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'Results': [[[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []]]}\n", + "{'PrimarySignalMissingCount': 668, 'CycleSecondMissingCount': 0, 'TotalSkippedCycles': 26, 'TotalCyclesCount': 147, 'GapsBetweenCyclesCount': 0, 'TotalRemovedCycleCount': 147, 'TotalInvalidCycleLengthCount': 0, 'TotalInvalidCycleTransitionCount': 0, 'TotalInvalidCycleMissingCount': 147, 'Metrics': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsRelativeGreenDistance': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsSP': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MedianShifts': [[-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999]], 'MedianGreenLengths': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'Results': [[[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []]]}\n", + "{'PrimarySignalMissingCount': 657, 'CycleSecondMissingCount': 207, 'TotalSkippedCycles': 71, 'TotalCyclesCount': 317, 'GapsBetweenCyclesCount': 0, 'TotalRemovedCycleCount': 317, 'TotalInvalidCycleLengthCount': 1, 'TotalInvalidCycleTransitionCount': 0, 'TotalInvalidCycleMissingCount': 317, 'Metrics': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsRelativeGreenDistance': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsSP': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MedianShifts': [[-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999]], 'MedianGreenLengths': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'Results': [[[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []]]}\n", + "{'PrimarySignalMissingCount': 670, 'CycleSecondMissingCount': 0, 'TotalSkippedCycles': 16, 'TotalCyclesCount': 128, 'GapsBetweenCyclesCount': 0, 'TotalRemovedCycleCount': 0, 'TotalInvalidCycleLengthCount': 0, 'TotalInvalidCycleTransitionCount': 0, 'TotalInvalidCycleMissingCount': 0, 'Metrics': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsRelativeGreenDistance': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MetricsSP': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'MedianShifts': [[-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999], [-999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999, -999999]], 'MedianGreenLengths': [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], 'Results': [[[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []]]}\n", + "Results distribution\n", + "{\"'1234'\": 7827, \"'03'\": 616, \"'13'\": 6511, \"'023'\": 309, \"'134'\": 47, \"'0'\": 209, \"'123'\": 94, \"'12345'\": 275, \"'013'\": 1079, \"'01234'\": 1159, \"'014'\": 39, \"'05'\": 61, \"'3'\": 18, \"'1'\": 22, \"'012'\": 85, \"'012345'\": 74, \"'0124'\": 33, \"'0135'\": 6, \"'01239'\": 1, \"'0136'\": 2, \"'036'\": 2, \"'0139'\": 1, \"'0134'\": 1, \"'01'\": 23, \"'12346'\": 4, \"''\": 4, \"'0123'\": 13, \"'012346'\": 5, \"'123459'\": 1, \"'12349'\": 1, \"'19'\": 1, \"'5'\": 3, \"'0236'\": 2}\n", + "Total\n", + "18528\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACUgAAAM8CAYAAACP+9iIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcxUlEQVR4nOzdf6zW9X3//wccykFnoWWUI7DjjnWx1ajAcDJmTWQ7ljHC0izdTN0KYdPFDhbnSbNy1gpjbcVuwtgfOFIrMrKpVNO6dRi0OxshbVmMKJlLrJYihaDnCDFyhG6Hes75/tF8TsOXH+VC4Ixnb7fk/cf1Pq/X9X5eyfnzntd7xODg4GAAAAAAAAAAAAAKGjncAwAAAAAAAAAAAJwrAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoKwLKpDatm1b5s+fn8mTJ2fEiBF58sknG/6OwcHB3H///bnyyivT3NycKVOm5Itf/OLZHxYAAAAAAAAAABh2o4Z7gEYcOXIkU6dOzR/+4R/md37nd87oO+66664888wzuf/++3PttdfmzTffzJtvvnmWJwUAAAAAAAAAAP4vGDE4ODg43EOciREjRuTrX/96Pvaxjw3d6+vry2c/+9k8+uijeeutt3LNNdfkS1/6Um6++eYkyUsvvZTrrrsu//3f/50PfehDwzM4AAAAAAAAAABw3lxQr9j7aZYsWZLt27fnsccey3/913/ld3/3d/Obv/mb+d73vpck+cY3vpEPfvCD+dd//ddcfvnlaWtry+233+4EKQAAAAAAAAAAKKpMILV37948/PDDefzxx3PTTTfliiuuyKc//el85CMfycMPP5wk2b17d37wgx/k8ccfz8aNG7Nhw4bs2LEjH//4x4d5egAAAAAAAAAA4FwYNdwDnC0vvvhi+vv7c+WVVx5zv6+vLz//8z+fJBkYGEhfX182btw4tO6hhx7KjBkz8vLLL3vtHgAAAAAAAAAAFFMmkDp8+HCampqyY8eONDU1HfO3Sy65JEkyadKkjBo16piI6qqrrkry4xOoBFIAAAAAAAAAAFBLmUBq+vTp6e/vzxtvvJGbbrrphGtuvPHGvPPOO/n+97+fK664IknyyiuvJEl+8Rd/8bzNCgAAAAAAAAAAnB8jBgcHB4d7iNN1+PDh7Nq1K8mPg6jVq1dn9uzZGT9+fC677LL8wR/8Qb797W9n1apVmT59eg4cOJCurq5cd911mTdvXgYGBvIrv/IrueSSS7JmzZoMDAxk8eLFGTt2bJ555plh/nUAAAAAAAAAAMDZdkEFUlu3bs3s2bOPu79w4cJs2LAhP/rRj/KFL3whGzduzP79+zNhwoT86q/+alasWJFrr702SfLaa6/lT//0T/PMM8/k537u5zJ37tysWrUq48ePP98/BwAAAAAAAAAAOMcuqEAKAAAAAAAAAACgESOHewAAAAAAAAAAAIBzZdRwD3A6BgYG8tprr+W9731vRowYMdzjAAAAAAAAAAAAw2xwcDBvv/12Jk+enJEjT35O1AURSL322mtpbW0d7jEAAAAAAAAAAID/Y/bt25df+IVfOOnfL4hA6r3vfW+SH/+YsWPHDvM0AAAAAAAAAADAcOvt7U1ra+tQW3QyF0Qg9f9eqzd27FiBFAAAAAAAAAAAMOT/tUUnc/KX7wEAAAAAAAAAAFzgBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFmjhnsA6mhbunm4RzilPffNG+4RAAAAAAAAAAA4z5wgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKCshgOpbdu2Zf78+Zk8eXJGjBiRJ5988rT3fvvb386oUaMybdq0Rh8LAAAAAAAAAADQsIYDqSNHjmTq1KlZu3ZtQ/veeuutLFiwIL/xG7/R6CMBAAAAAAAAAADOyKhGN8ydOzdz585t+EF33nlnbrvttjQ1NTV06hQAAAAAAAAAAMCZavgEqTPx8MMPZ/fu3Vm+fPlpre/r60tvb+8xFwAAAAAAAAAAQKPOeSD1ve99L0uXLs0//uM/ZtSo0zuwauXKlRk3btzQ1draeo6nBAAAAAAAAAAAKjqngVR/f39uu+22rFixIldeeeVp7+vs7MyhQ4eGrn379p3DKQEAAAAAAAAAgKpO70inM/T222/nueeeywsvvJAlS5YkSQYGBjI4OJhRo0blmWeeya//+q8ft6+5uTnNzc3ncjQAAAAAAAAAAOBnwDkNpMaOHZsXX3zxmHsPPPBA/v3f/z1PPPFELr/88nP5eAAAAAAAAAAA4Gdcw4HU4cOHs2vXrqHPr776anbu3Jnx48fnsssuS2dnZ/bv35+NGzdm5MiRueaaa47ZP3HixIwZM+a4+wAAAAAAAAAAAGdbw4HUc889l9mzZw997ujoSJIsXLgwGzZsyOuvv569e/eevQkBAAAAAAAAAADO0IjBwcHB4R7ip+nt7c24ceNy6NChjB07drjH4STalm4e7hFOac9984Z7BAAAAAAAAAAAzpLTbYpGnseZAAAAAAAAAAAAziuBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZDQdS27Zty/z58zN58uSMGDEiTz755CnXf+1rX8stt9ySD3zgAxk7dmxmzZqVp59++kznBQAAAAAAAAAAOG0NB1JHjhzJ1KlTs3bt2tNav23bttxyyy156qmnsmPHjsyePTvz58/PCy+80PCwAAAAAAAAAAAAjRjV6Ia5c+dm7ty5p71+zZo1x3y+995788///M/5xje+kenTpzf6eOBnSNvSzcM9wkntuW/ecI8AAAAAAAAAAJyGhgOpd2tgYCBvv/12xo8ff9I1fX196evrG/rc29t7PkYDAAAAAAAAAACKafgVe+/W/fffn8OHD+f3fu/3Trpm5cqVGTdu3NDV2tp6HicEAAAAAAAAAACqOK+B1COPPJIVK1bkq1/9aiZOnHjSdZ2dnTl06NDQtW/fvvM4JQAAAAAAAAAAUMV5e8XeY489lttvvz2PP/542tvbT7m2ubk5zc3N52kyAAAAAAAAAACgqvNygtSjjz6aRYsW5dFHH828efPOxyMBAAAAAAAAAAAaP0Hq8OHD2bVr19DnV199NTt37sz48eNz2WWXpbOzM/v378/GjRuT/Pi1egsXLszf/d3fZebMmenu7k6SXHTRRRk3btxZ+hkAAAAAAAAAAADHa/gEqeeeey7Tp0/P9OnTkyQdHR2ZPn16li1bliR5/fXXs3fv3qH1X/7yl/POO+9k8eLFmTRp0tB11113naWfAAAAAAAAAAAAcGINnyB18803Z3Bw8KR/37BhwzGft27d2ugjAAAAAAAAAAAAzoqGT5ACAAAAAAAAAAC4UAikAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMpqOJDatm1b5s+fn8mTJ2fEiBF58sknf+qerVu35pd/+ZfT3NycX/qlX8qGDRvOYFQAAAAAAAAAAIDGNBxIHTlyJFOnTs3atWtPa/2rr76aefPmZfbs2dm5c2f+7M/+LLfffnuefvrphocFAAAAAAAAAABoxKhGN8ydOzdz58497fXr1q3L5ZdfnlWrViVJrrrqqnzrW9/K3/7t32bOnDkn3NPX15e+vr6hz729vY2OCQAAAAAAAAAA0PgJUo3avn172tvbj7k3Z86cbN++/aR7Vq5cmXHjxg1dra2t53pMAAAAAAAAAACgoHMeSHV3d6elpeWYey0tLent7c3//M//nHBPZ2dnDh06NHTt27fvXI8JAAAAAAAAAAAU1PAr9s6H5ubmNDc3D/cYAAAAAAAAAADABe6cnyB16aWXpqen55h7PT09GTt2bC666KJz/XgAAAAAAAAAAOBn2DkPpGbNmpWurq5j7n3zm9/MrFmzzvWjAQAAAAAAAACAn3ENB1KHDx/Ozp07s3PnziTJq6++mp07d2bv3r1Jks7OzixYsGBo/Z133pndu3fnz//8z/Pd7343DzzwQL761a/m7rvvPju/AAAAAAAAAAAA4CQaDqSee+65TJ8+PdOnT0+SdHR0ZPr06Vm2bFmS5PXXXx+KpZLk8ssvz+bNm/PNb34zU6dOzapVq/KVr3wlc+bMOUs/AQAAAAAAAAAA4MRGNbrh5ptvzuDg4En/vmHDhhPueeGFFxp9FAAAAAAAAAAAwLvS8AlSAAAAAAAAAAAAFwqBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyziiQWrt2bdra2jJmzJjMnDkzzz777CnXr1mzJh/60Idy0UUXpbW1NXfffXf+93//94wGBgAAAAAAAAAAOF0NB1KbNm1KR0dHli9fnueffz5Tp07NnDlz8sYbb5xw/SOPPJKlS5dm+fLleemll/LQQw9l06ZN+Yu/+It3PTwAAAAAAAAAAMCpNBxIrV69OnfccUcWLVqUq6++OuvWrcvFF1+c9evXn3D9d77zndx444257bbb0tbWlo9+9KP5xCc+8VNPnQIAAAAAAAAAAHi3Ggqkjh49mh07dqS9vf0nXzByZNrb27N9+/YT7vm1X/u17NixYyiI2r17d5566qn81m/91kmf09fXl97e3mMuAAAAAAAAAACARo1qZPHBgwfT39+flpaWY+63tLTku9/97gn33HbbbTl48GA+8pGPZHBwMO+8807uvPPOU75ib+XKlVmxYkUjowEAAAAAAAAAAByn4VfsNWrr1q25995788ADD+T555/P1772tWzevDmf//znT7qns7Mzhw4dGrr27dt3rscEAAAAAAAAAAAKaugEqQkTJqSpqSk9PT3H3O/p6cmll156wj333HNPPvnJT+b2229Pklx77bU5cuRI/viP/zif/exnM3Lk8Y1Wc3NzmpubGxkNAAAAAAAAAADgOA2dIDV69OjMmDEjXV1dQ/cGBgbS1dWVWbNmnXDPD3/4w+MiqKampiTJ4OBgo/MCAAAAAAAAAACctoZOkEqSjo6OLFy4MNdff31uuOGGrFmzJkeOHMmiRYuSJAsWLMiUKVOycuXKJMn8+fOzevXqTJ8+PTNnzsyuXbtyzz33ZP78+UOhFAAAAAAAAAAAwLnQcCB166235sCBA1m2bFm6u7szbdq0bNmyJS0tLUmSvXv3HnNi1Oc+97mMGDEin/vc57J///584AMfyPz58/PFL37x7P0KAAAAAAAAAACAExgxeAG85663tzfjxo3LoUOHMnbs2OEeh5NoW7p5uEc4pT33zRvuEWjQ/+X/Kf9PAAAAAAAAADC8TrcpGnnSvwAAAAAAAAAAAFzgBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZZ1RILV27dq0tbVlzJgxmTlzZp599tlTrn/rrbeyePHiTJo0Kc3Nzbnyyivz1FNPndHAAAAAAAAAAAAAp2tUoxs2bdqUjo6OrFu3LjNnzsyaNWsyZ86cvPzyy5k4ceJx648ePZpbbrklEydOzBNPPJEpU6bkBz/4Qd73vvedjfkBAAAAAAAAAABOquFAavXq1bnjjjuyaNGiJMm6deuyefPmrF+/PkuXLj1u/fr16/Pmm2/mO9/5Tt7znvckSdra2k75jL6+vvT19Q197u3tbXRMAAAAAAAAAACAxl6xd/To0ezYsSPt7e0/+YKRI9Pe3p7t27efcM+//Mu/ZNasWVm8eHFaWlpyzTXX5N57701/f/9Jn7Ny5cqMGzdu6GptbW1kTAAAAAAAAAAAgCQNBlIHDx5Mf39/Wlpajrnf0tKS7u7uE+7ZvXt3nnjiifT39+epp57KPffck1WrVuULX/jCSZ/T2dmZQ4cODV379u1rZEwAAAAAAAAAAIAkZ/CKvUYNDAxk4sSJ+fKXv5ympqbMmDEj+/fvz9/8zd9k+fLlJ9zT3Nyc5ubmcz0aAAAAAAAAAABQXEOB1IQJE9LU1JSenp5j7vf09OTSSy894Z5JkyblPe95T5qamobuXXXVVenu7s7Ro0czevToMxgbAAAAAAAAAADgp2voFXujR4/OjBkz0tXVNXRvYGAgXV1dmTVr1gn33Hjjjdm1a1cGBgaG7r3yyiuZNGmSOAoAAAAAAAAAADinGgqkkqSjoyMPPvhg/uEf/iEvvfRSPvWpT+XIkSNZtGhRkmTBggXp7OwcWv+pT30qb775Zu6666688sor2bx5c+69994sXrz47P0KAAAAAAAAAACAE2joFXtJcuutt+bAgQNZtmxZuru7M23atGzZsiUtLS1Jkr1792bkyJ90V62trXn66adz991357rrrsuUKVNy11135TOf+czZ+xUAAAAAAAAAAAAn0HAglSRLlizJkiVLTvi3rVu3Hndv1qxZ+c///M8zeRQAAAAAAAAAAMAZa/gVewAAAAAAAAAAABcKgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAss4okFq7dm3a2toyZsyYzJw5M88+++xp7XvssccyYsSIfOxjHzuTxwIAAAAAAAAAADSk4UBq06ZN6ejoyPLly/P8889n6tSpmTNnTt54441T7tuzZ08+/elP56abbjrjYQEAAAAAAAAAABrRcCC1evXq3HHHHVm0aFGuvvrqrFu3LhdffHHWr19/0j39/f35/d///axYsSIf/OAH39XAAAAAAAAAAAAAp6uhQOro0aPZsWNH2tvbf/IFI0emvb0927dvP+m+v/qrv8rEiRPzR3/0R6f1nL6+vvT29h5zAQAAAAAAAAAANKqhQOrgwYPp7+9PS0vLMfdbWlrS3d19wj3f+ta38tBDD+XBBx887eesXLky48aNG7paW1sbGRMAAAAAAAAAACDJGbxirxFvv/12PvnJT+bBBx/MhAkTTntfZ2dnDh06NHTt27fvHE4JAAAAAAAAAABUNaqRxRMmTEhTU1N6enqOud/T05NLL730uPXf//73s2fPnsyfP3/o3sDAwI8fPGpUXn755VxxxRXH7Wtubk5zc3MjowEAAAAAAAAAABynoROkRo8enRkzZqSrq2vo3sDAQLq6ujJr1qzj1n/4wx/Oiy++mJ07dw5dv/3bv53Zs2dn586dXp0HAAAAAAAAAACcUw2dIJUkHR0dWbhwYa6//vrccMMNWbNmTY4cOZJFixYlSRYsWJApU6Zk5cqVGTNmTK655ppj9r/vfe9LkuPuAwAAAAAAAAAAnG0NB1K33nprDhw4kGXLlqW7uzvTpk3Lli1b0tLSkiTZu3dvRo5s6GAqAAAAAAAAAACAc6LhQCpJlixZkiVLlpzwb1u3bj3l3g0bNpzJIwEAAAAAAAAAABrmqCcAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWWcUSK1duzZtbW0ZM2ZMZs6cmWefffakax988MHcdNNNef/735/3v//9aW9vP+V6AAAAAAAAAACAs6XhQGrTpk3p6OjI8uXL8/zzz2fq1KmZM2dO3njjjROu37p1az7xiU/kP/7jP7J9+/a0trbmox/9aPbv3/+uhwcAAAAAAAAAADiVhgOp1atX54477siiRYty9dVXZ926dbn44ouzfv36E67/p3/6p/zJn/xJpk2blg9/+MP5yle+koGBgXR1db3r4QEAAAAAAAAAAE6loUDq6NGj2bFjR9rb23/yBSNHpr29Pdu3bz+t7/jhD3+YH/3oRxk/fvxJ1/T19aW3t/eYCwAAAAAAAAAAoFENBVIHDx5Mf39/Wlpajrnf0tKS7u7u0/qOz3zmM5k8efIxkdX/38qVKzNu3Lihq7W1tZExAQAAAAAAAAAAkpzBK/bejfvuuy+PPfZYvv71r2fMmDEnXdfZ2ZlDhw4NXfv27TuPUwIAAAAAAAAAAFWMamTxhAkT0tTUlJ6enmPu9/T05NJLLz3l3vvvvz/33Xdf/u3f/i3XXXfdKdc2Nzenubm5kdEAAAAAAAAAAACO09AJUqNHj86MGTPS1dU1dG9gYCBdXV2ZNWvWSff99V//dT7/+c9ny5Ytuf766898WgAAAAAAAAAAgAY0dIJUknR0dGThwoW5/vrrc8MNN2TNmjU5cuRIFi1alCRZsGBBpkyZkpUrVyZJvvSlL2XZsmV55JFH0tbWlu7u7iTJJZdckksuueQs/hQAAAAAAAAAAIBjNRxI3XrrrTlw4ECWLVuW7u7uTJs2LVu2bElLS0uSZO/evRk58icHU/393/99jh49mo9//OPHfM/y5cvzl3/5l+9ueuCE2pZuHu4RTmnPffOGewQAAAAAAAAA4GdEw4FUkixZsiRLliw54d+2bt16zOc9e/acySMAAAAAAAAAAADetZE/fQkAAAAAAAAAAMCFSSAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUJZACgAAAAAAAAAAKEsgBQAAAAAAAAAAlCWQAgAAAAAAAAAAyhJIAQAAAAAAAAAAZQmkAAAAAAAAAACAsgRSAAAAAAAAAABAWQIpAAAAAAAAAACgLIEUAAAAAAAAAABQlkAKAAAAAAAAAAAoSyAFAAAAAAAAAACUJZACAAAAAAAAAADKEkgBAAAAAAAAAABlCaQAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQ1argHgP9r2pZuHu4RTmrPffOGewQAAAAAAAAAgAuKE6QAAAAAAAAAAICyBFIAAAAAAAAAAEBZAikAAAAAAAAAAKAsgRQAAAAAAAAAAFCWQAoAAAAAAAAAAChLIAUAAAAAAAAAAJQlkAIAAAAAAAAAAMoSSAEAAAAAAAAAAGUJpAAAAAAAAAAAgLIEUgAAAAAAAAAAQFkCKQAAAAAAAAAAoCyBFAAAAAAAAAAAUNao4R4AADg9bUs3D/cIp7TnvnnDPQIAAAAAAADAcZwgBQAAAAAAAAAAlCWQAgAAAP6/9u47PIpyfR/4vQnJpmDoIQWSUBOUDgoBJckBk4hKOUdAQMGG4hc1wiVCBAzqAZEiRcCAHsIlUi1IEUFKsAAHRQgISiiKQBCkJQEioezz+8Nf9mRJ2zIt4/25Lv5gZzb73DvzvvPOu7OzRERERERERERERKbFC6SIiIiIiIiIiIiIiIiIiIiIiMi0eIEUERERERERERERERERERERERGZFi+QIiIiIiIiIiIiIiIiIiIiIiIi0+IFUkREREREREREREREREREREREZFq8QIqIiIiIiIiIiIiIiIiIiIiIiEyLF0gREREREREREREREREREREREZFp8QIpIiIiIiIiIiIiIiIiIiIiIiIyLV4gRUREREREREREREREREREREREplVF7wKIiIiIiIiMIGr053qXUKZjk+7XuwQiIiIiIiIiIiIiokqLF0gREamIH7QaB7cFkSMjtwmA7YKIiIiIiIiIiIiIiIiUw5/YIyIiIiIiIiIiIiIiIiIiIiIi0+IFUkREREREREREREREREREREREZFr8iT0iIioXf4aLiIiIiIiIiIiIiIiIiIgqM14gRUREROQiI184yIsGiYiIHPG4TURERERERERERG5dIDVnzhxMmTIFp0+fRqtWrfDOO+/grrvuKnP9jz76COPGjcOxY8fQpEkTvPXWW+jevbvbRRMREREREREZGS/KISIiIiIiIiIiIjIOly+QWr58OUaMGIH09HR06NABM2bMQFJSErKzsxEcHFxi/e3bt6N///5488038cADD2DJkiXo1asXdu/ejebNmysSgoiIiIiI9GPkC0GAv9fFINwWRERElQeP20RERERERETacfkCqbfffhtDhgzB448/DgBIT0/H559/jgULFmD06NEl1p85cyaSk5MxcuRIAMAbb7yBjRs3Yvbs2UhPTy/1NQoLC1FYWGj/f15eHgAgPz/f1XJJQ7bCAr1LKJez+4+Rc5ghA2COHMxgHGbIYYYMwN/rOG3kbcH9qfJpnrZB7xLKtf+1pArXMcv+ZOQcZsgA/L3atpG3xd9pOwDcFkRkXEbunwD2UURERERERFQ5FJ2/iki561mkojWKuXbtGgICAvDxxx+jV69e9scHDx6M3NxcrFq1qsRzIiIiMGLECLz44ov2x9LS0vDZZ59h7969pb7O+PHj8dprrzlbFhERERERERERERERERERERER/U2dOHEC9erVK3O5S3eQOnfuHG7evIm6des6PF63bl0cPHiw1OecPn261PVPnz5d5uukpqZixIgR9v/bbDZcuHABtWrVgsVicaVkqqTy8/NRv359nDhxAkFBQXqX4zYz5GAG4zBDDmYwDjPkMEMGwBw5mME4zJDDDBkAc+RgBuMwQw5mMA4z5DBDBsAcOZjBOMyQwwwZAHPkYAbjMEMOZjAOM+QwQwbAHDmYwTjMkMMMGQBz5GAGqqxEBJcuXUJYWFi567n8E3tasFqtsFqtDo9Vr15dn2JIV0FBQabouMyQgxmMwww5mME4zJDDDBkAc+RgBuMwQw4zZADMkYMZjMMMOZjBOMyQwwwZAHPkYAbjMEMOM2QAzJGDGYzDDDmYwTjMkMMMGQBz5GAG4zBDDjNkAMyRgxmoMqpWrVqF63i58gdr164Nb29vnDlzxuHxM2fOICQkpNTnhISEuLQ+ERERERERERERERERERERERGRUly6QMrX1xft2rXD5s2b7Y/ZbDZs3rwZsbGxpT4nNjbWYX0A2LhxY5nrExERERERERERERERERERERERKcXln9gbMWIEBg8ejPbt2+Ouu+7CjBkzcOXKFTz++OMAgEGDBiE8PBxvvvkmACAlJQVxcXGYNm0a7r//fixbtgy7du3C/PnzlU1CpmK1WpGWllbipxYrGzPkYAbjMEMOZjAOM+QwQwbAHDmYwTjMkMMMGQBz5GAG4zBDDmYwDjPkMEMGwBw5mME4zJDDDBkAc+RgBuMwQw5mMA4z5DBDBsAcOZjBOMyQwwwZAHPkYAYyO4uIiKtPmj17NqZMmYLTp0+jdevWmDVrFjp06AAAiI+PR1RUFBYuXGhf/6OPPsLYsWNx7NgxNGnSBJMnT0b37t0VC0FERERERERERERERERERERERFQaty6QIiIiIiIiIiIiIiIiIiIiIiIiqgy89C6AiIiIiIiIiIiIiIiIiIiIiIhILbxAioiIiIiIiIiIiIiIiIiIiIiITIsXSBERERERERERERERERERERERkWnxAikiIiIiIiIiIiIiIiIiIiIiIjItXiBFinnssccwfvx4AMCnn36KxMRE1KpVCxaLBVlZWQ7rXrhwAc8//zyio6Ph7++PiIgIvPDCC8jLy7Ovc/78eSQnJyMsLAxWqxX169fHc889h/z8/FJff9u2bahSpQpat25dZl1K5xQRvPrqqwgNDYW/vz+6deuGw4cPO6zfo0cPREREwM/PD6GhoXj00Udx6tQp+/KtW7ciKipKsfqUUjxnfHw8Fi5cqGs9pXFlnwOAZ555Bo0aNYK/vz/q1KmDnj174uDBg/blx44dg8ViMUzNSrWThQsXIj4+XpcMQMXve3Hnz59HvXr1YLFYkJubq1oGZ7na3i0WC44dO2bI+o4dO4Ynn3wSDRo0gL+/Pxo1aoS0tDRcu3bNvk52djYSEhJQt25d+Pn5oWHDhhg7diyuX79uX2f8+PF47LHHKlUuo/SzxXONHz8eMTExCAwMRI0aNdCtWzfs3LnTYX2t9ydnuNr+o6KisHXrVl1eX8uxxvjx42GxWBz+xcTEOKzjynvhat8zYcIEdOrUCQEBAahevXqJv6fGsULpGvfu3Yv+/fujfv368Pf3R7NmzTBz5kyHdb799lt07twZtWrVgr+/P2JiYjB9+vQya5w0aRIsFgtefPFFh8f13BbO5NTimKd0LqXHUEbdvzw9r1A6V3FqjaH06I+KM+o5XlRUVIl+f9KkSfbleo09XB1rFCksLETr1q1LHE/1yFGU4fr16xg1ahRatGiBwMBAhIWFYdCgQQ7n0oAxzrfVaNu37l8WiwXLli2zL9f6WKHEuMvVY4VRjwXFlTXWiI+PL7H9hg4dWup7oUfO4tToZ9WYM9CjTSg9/wcAK1asQOvWrREQEIDIyEhMmTLFYXllmb9ZuHAhWrZsCT8/PwQHB2PYsGH2ZWr0u2psCxHB1KlT0bRpU1itVoSHh2PChAkOGY2+LTZv3oxOnTrhtttuQ0hICEaNGoUbN27Yl7u6LYx6vg0AOTk5eOSRR+z9c4sWLbBr1y77ck/mrl3dNq708WpRelsB6vezeuxfW7duLTXX6dOnS62rvJqNNBZReg7KGcXfi8cee6zE6ycnJzusb4Q5TVfbdhERwX333QeLxYLPPvvM/rgWbbs0rp7jqX2uatRjxaVLl/Diiy8iMjIS/v7+6NSpE77//nuHdbQ8Vhw9ehS9e/dGnTp1EBQUhL59++LMmTMO6yjdTvSYv/G0n/Ukg1KfdwFAbm4uhg0bhtDQUFitVjRt2hTr1q1zKwNVDrxAilRx5coV3H333XjrrbdKXX7q1CmcOnUKU6dOxf79+7Fw4UKsX78eTz75pH0dLy8v9OzZE6tXr8ahQ4ewcOFCbNq0yeGEo0hubi4GDRqErl27qpapNJMnT8asWbOQnp6OnTt3IjAwEElJSbh69ap9nYSEBKxYsQLZ2dn45JNPcPToUTz00EOa1vl3UNE+BwDt2rVDRkYGfv75Z2zYsAEigsTERNy8eVPDSv9H63aiRwbAtff9ySefRMuWLdUs2W3OtHc9VVTfwYMHYbPZMG/ePBw4cADTp09Heno6XnnlFfvf8PHxwaBBg/Dll18iOzsbM2bMwHvvvYe0tDS9YimSy4iaNm2K2bNn48cff8S3336LqKgoJCYm4uzZs3qX5jRn2r+er6/1WOOOO+7A77//bv/37bffKpLTmb7n2rVr6NOnD5599tlS/4baxwolavzhhx8QHByMDz/8EAcOHMCYMWOQmpqK2bNn29cJDAzEc889h6+//ho///wzxo4di7Fjx2L+/Pkl/t7333+PefPmKXpM0Sqn1pTIZfT6lN6/jJKrOC3GUFr3R0Y+xwOA119/3aHff/755zWtsyKujDVefvllhIWF6VBl2QoKCrB7926MGzcOu3fvxqeffors7Gz06NHDYT2jnW8r2bYzMjIc9rFevXqpXH3ZlBh3ecKIx4KKxhpDhgxx2H6TJ082TM4iWvSzSs4Z6NkmlJj/++KLLzBw4EAMHToU+/fvx9y5czF9+nTNxoFKbYu3334bY8aMwejRo3HgwAFs2rQJSUlJWkQAoNxcbEpKCt5//31MnToVBw8exOrVq3HXXXdpkkGJbbF37150794dycnJ2LNnD5YvX47Vq1dj9OjRmtSo5fn2xYsX0blzZ/j4+OCLL77ATz/9hGnTpqFGjRqKZC3O2XkOd/p4tSh5jNaqn9V6/8rOznbIFRwc7HLNRhuLqDUH5azk5GSH11+6dKmmr+8qV+YwZ8yYocuFUM5w9hxPq3NVIx0rnnrqKWzcuBGLFi3Cjz/+iMTERHTr1g05OTnKBf7/Ksp95coVJCYmwmKxYMuWLdi2bRuuXbuGBx98EDabTfF6SqP1/I0S/ayrGZT6vOvatWu49957cezYMXz88cfIzs7Ge++9h/DwcI8zkIEJkUIGDx4saWlpDo/9+uuvAkD27NlT4fNXrFghvr6+cv369TLXmTlzptSrV6/E4/369ZOxY8dKWlqatGrVqsK6PFH092w2m4SEhMiUKVPsy3Jzc8VqtcrSpUvLfP6qVavEYrHItWvXREQkMzNTIiMjFatPKcXft7i4OMnIyNC1ntJ4us/t3btXAMiRI0ccnqsmPdpJRkaGxMXFuVlxSUq/70Xmzp0rcXFxsnnzZgEgFy9etC9TOoOzXG3vAOTXX381bH23mjx5sjRo0KDc1xg+fLjcfffd9v+npaXJ4MGDPa69PErnMko/W97xKC8vTwDIpk2b7I9pvT85w9X2HxkZKZmZmbq9/q3UGmuU9titXHkv3G0DGRkZUq1aNadew9NjhRY1/t///Z8kJCSUu07v3r3lkUcecXjs0qVL0qRJE9m4caPExcVJSkqKw3KjbYtbc2pxzFM6l9JjKKPuX56eV6iVS80xlB79UREjn+NFRkbK9OnTy/x7eo09XB1riIisW7dOYmJi5MCBAyWOp3rkKC/Dd999JwDkt99+K/P5epxvq9FOAMjKlSvLfE0tjxXFeTLucvVYYdRjgUjFY43SHiuu+HuhZ061+lk15gz0aBNKz//1799fHnroIYd1Zs2aJfXq1RObzaZKDqW3xYULF8Tf37/EsaQ4NfpdpbfFTz/9JFWqVJGDBw+W+Ryjb4vU1FRp3769wzqrV68WPz8/yc/PFxHXt4VRz7dHjRrlMC9VGk/mrl3N7UofrxY1tpXa/awe+1dmZmaJ8yNn6rp1mdHGIkrPQTmj+Ps0ePBg6dmzZ7nrG2FO0519bs+ePRIeHi6///57iTahRdsujavneGqfqxrxWFFQUCDe3t6ydu1ah/Xbtm0rY8aMsf9fq2PFhg0bxMvLS/Ly8uyP5ebmisVikY0bN9ofU7qd6DF/42k/q1SGIu583vXuu+9Kw4YN7eNETzNQ5cA7SJFh5OXlISgoCFWqVCl1+alTp/Dpp58iLi7O4fGMjAz88ssvmt/h5Ndff8Xp06fRrVs3+2PVqlVDhw4dsGPHjlKfc+HCBSxevBidOnWCj4+PVqVSKa5cuYKMjAw0aNAA9evX17scp7nbToyirPf9p59+wuuvv44PPvgAXl7GOzS509615G59eXl5qFmzZpnLjxw5gvXr1+u2P6mVy2iuXbuG+fPno1q1amjVqpXe5ZiammONw4cPIywsDA0bNsTAgQNx/Phxj+tVq+9R8lihZv9YUVves2cPtm/fXiLHsGHDcP/99zvU5Ck9c6rJrMc3Z7i7fylByVxajaG07o8qwznepEmTUKtWLbRp0wZTpkxx+EkboylrrHHmzBkMGTIEixYtQkBAgI4VOicvLw8Wi6XMn6XT+3xb6XYybNgw1K5dG3fddRcWLFgAEVGyXNVVNO5ylhGPBc6MNRYvXozatWujefPmSE1NRUFBQbm1aJ1Tr362IuXN1ejVJpSa/yssLISfn5/Dev7+/jh58iR+++039QK4qbRtsXHjRthsNuTk5KBZs2aoV68e+vbtixMnTmhSk1LbYs2aNWjYsCHWrl2LBg0aICoqCk899RQuXLigSQ5XlbYtytqfrl69ih9++EGPMlU73169ejXat2+PPn36IDg4GG3atMF7772neP2ucLWPN5qytpWRxx6ezIm3bt0aoaGhuPfee7Ft2zaXX9uIYxE15qBcsXXrVgQHByM6OhrPPvsszp8/r+nrq6GgoAADBgzAnDlzEBISonc5FSpvPtnI56pqHCtu3LiBmzdvlnpc1PruasBfx2iLxQKr1Wp/zM/PD15eXprUo8d8sqf97K20/Lxr9erViI2NxbBhw1C3bl00b94cEydO1O2Xh0gjOl+gRSbn7JXDZ8+elYiICHnllVdKLHv44YfF399fAMiDDz4of/75p33ZoUOHJDg4WLKzs0XEuavnlbJt2zYBIKdOnXJ4vE+fPtK3b1+Hx15++WUJCAgQANKxY0c5d+6cJjX+HVW0z82ZM0cCAwMFgERHR5e4i5Ee1G4nWvDkfb969aq0bNlSFi1aJCLOXXWuNVfaux7cqe/w4cMSFBQk8+fPL7EsNjZWrFarAJCnn35abt68qUrdFVE6l9GsWbNGAgMDxWKxSFhYmHz33Xd6l+QWV74lpOfrqznWWLdunaxYsUL27t0r69evl9jYWImIiLB/c9ddrraBir7xo8axQukai//dKlWqyIYNG0osCw8PF19fX/Hy8pLXX3/dYdnSpUulefPm9mwVfbvXWXrk1IJauZRitP1LKUrl0nIMpWV/VBnO8aZNmyaZmZmyd+9eeffdd6V69eoyfPhwTWp0RXljDZvNJsnJyfLGG2+IiP7H84r8+eef0rZtWxkwYECJZUY531aynbz++uvy7bffyu7du2XSpElitVpl5syZapTtEiXGXa4y2rHAmbHGvHnzZP369bJv3z758MMPJTw8XHr37m2YnHr0s57O1ejZJpSa/5s3b54EBATIpk2b5ObNm5KdnS0xMTECQLZv365JFhHPtsWbb74pPj4+Eh0dLevXr5cdO3ZI165dJTo6WgoLC1WvXalt8cwzz4jVapUOHTrI119/LZmZmdK6desK7+KiNE+2RdHdKZYsWSI3btyQkydPyj333CMAZMmSJZrVWETN822r1SpWq1VSU1Nl9+7dMm/ePPHz85OFCxd6nK8s5eV2p4/XgqfbSo9+Vu396+DBg5Keni67du2Sbdu2yeOPPy5VqlSRH374waU6jTYWUWsOyllLly6VVatWyb59+2TlypXSrFkzufPOO+XGjRuavL4nytvnnn76aXnyySft/0cFd1XTS0XzyXqcqxrhWBEbGytxcXGSk5MjN27ckEWLFomXl5c0bdrU43xlKSv3H3/8IUFBQZKSkiJXrlyRy5cvy3PPPWf/rEVtWs7fKNXPeppBxP3Pu6Kjo8VqtcoTTzwhu3btkmXLlknNmjVl/PjxHmUgYzPebTrobyc/Px/3338/br/9dowfP77E8unTp2P37t1YtWoVjh49ihEjRgAAbt68iQEDBuC1115D06ZNNa7aNSNHjsSePXvw5ZdfwtvbG4MGDTLUNzD+TgYOHIg9e/bgq6++QtOmTdG3b1+H3901KnfbiVGU976npqaiWbNmeOSRR3Su8u8jJycHycnJ6NOnD4YMGVJi+fLly7F7924sWbIEn3/+OaZOnapDla6rKJfRJCQkICsrC9u3b0dycjL69u2LP/74Q++yTEntscZ9992HPn36oGXLlkhKSsK6deuQm5uLFStWqBXJLUY/VhTZv38/evbsibS0NCQmJpZY/s0332DXrl1IT0/HjBkzsHTpUgDAiRMnkJKSgsWLF5f41pgRVZST1OHu/mVElXkMVdnP8UaMGIH4+Hi0bNkSQ4cOxbRp0/DOO++gsLBQ79IclDfWeOedd3Dp0iWkpqbqXGXFrl+/jr59+0JE8O6775ZYbsbz7XHjxqFz585o06YNRo0ahZdffhlTpkzRuyynVDTuMgK1xxpPP/00kpKS0KJFCwwcOBAffPABVq5ciaNHj6qWqTSl5TRqP1vRXE1laRPl9UdDhgzBc889hwceeAC+vr7o2LEjHn74YQAw1J20y9sWNpsN169fx6xZs5CUlISOHTti6dKlOHz4MDIzM3Wu3FF528Jms6GwsBAffPAB7rnnHsTHx+M///kPMjMzkZ2drXPl/1PetkhMTMSUKVMwdOhQWK1WNG3aFN27dweg/f6k9vm2zWZD27ZtMXHiRLRp0wZPP/00hgwZgvT0dLUilcsofbw7yttWRu1nPZkTj46OxjPPPIN27dqhU6dOWLBgATp16oTp06drmKB0npyX6j0H9fDDD6NHjx5o0aIFevXqhbVr1+L777/H1q1bNXl9NaxevRpbtmzBjBkz9C6lQhXNJxv1XFXtY8WiRYsgIggPD4fVasWsWbPQv39/XcZYderUwUcffYQ1a9agatWqqFatGnJzc9G2bVtDjfmcVRn6WU8+77LZbAgODsb8+fPRrl079OvXD2PGjNFtnEEa0fPqLDK/iq4czs/Pl9jYWOnatatTdzH45ptv7FeNXrx4UQCIt7e3/Z/FYrE/tnnzZoXTODp69Gip2bp06SIvvPBCmc87ceKE5t8O+ztx5ZvPhYWFEhAQoOg3q9yhZjvRiifve6tWrcTLy8vejr28vOzt+NVXX1W5cue429614kp9OTk50qRJE3n00UedujPUokWLxN/fX5dvAamZy4gaN24sEydO1LsMl+l9xwmjjjXat28vo0ePdjeWiLje97hydx+ljhVK13jgwAEJDg52+o4Tb7zxhv3bYCtXriyxvQCIxWIRb29vj/oxvXOqRc19TAl6v+/F9y8lKZVLyzGUVv1RZT3H279/vwCQgwcPqlqfp4qPNXr27Omw/xT1md7e3jJo0CCdK/2fa9euSa9evaRly5ZO3RlKz/NtNdvJ2rVrBYBcvXpVgUrdp/S4yxlGOha4O9a4fPmyAJD169eX+Tpa5dSrn1V6rkbLNqH0/F/R3X4KCwtl3bp1AkD++OMPNUovlSfbYsGCBQJATpw44bBecHCwJndxVmpbvPrqq1KlShWHdQoKCgSAfPnll4rXXRYl2oXNZpOcnBwpKCiQn376SQAoendqI5xvR0REONzVRURk7ty5EhYW5nG+sriybZzp47Wg9LbSop/VY078pZdeko4dO7pUp5HGImVRYg7KE7Vr15b09HTdXt9ZZe1zKSkp9vFc8TGel5eXxMXF6VKrsyqaT9biXNUIx4oily9ftvcBffv2le7du3ucryzOHCvOnj1rv8t33bp1ZfLkyarVU0Tv+WR3+tlbafl5V5cuXaRr164O6xSN0bW4Qyrpo/JdqkimkZ+fj8TERPj6+mL16tVOfdPfZrMB+Os3XIOCgvDjjz8iKyvL/m/o0KGIjo5GVlYWOnTooGr9DRo0QEhICDZv3mx/LD8/Hzt37kRsbKxTGUhfIgIRMfS28LSdGNGt7/snn3yCvXv32tvx+++/D+Cvb8oMGzZMz1Lt3G3vWnG2vpycHMTHx6Ndu3bIyMhw6hsLRd8QLdqvtKRmLiMq+hYrKUevscbly5dx9OhRhIaGelS/mn2PUscKJWs8cOAAEhISMHjwYEyYMMGp5xRvN127di2xvdq3b4+BAwciKysL3t7eLtVTnN451WKW45szPN2/lKRULi3HUFr1R5X1HC8rKwteXl4IDg5WtT5PFd+nZ82a5bD/rFu3DsBf36zUu28qUnTnqMOHD2PTpk2oVatWhc/R81xIzXaSlZWFGjVqwGq1elqmatwZdznDSMcCd8caWVlZAFDu2FCrnHr3s85wZq5Gyzah9Pyft7c3wsPD4evri6VLlyI2NhZ16tRRp3gP3botOnfuDAAOd1m6cOECzp07h8jISNXrUWpbdO7cGTdu3HC448+hQ4cAQJMc7iirXVgsFoSFhcHf3x9Lly5F/fr10bZtW01q0up8u3PnziXu7HXo0CHDbCtn+ni9ubOt9B57qDUnnpWV5fK2MtJYpDRKzUG56+TJkzh//ryh20BFRo8ejX379jn0R8Bfd87JyMjQt7gKVLR/6H2uqvXcbGBgIEJDQ3Hx4kVs2LABPXv2VCWXs2rXro3q1atjy5Yt+OOPP9CjRw/VX1Pv+WR3+tlbafl5V+fOnXHkyBGHz78OHTqE0NBQ+Pr6epSDjKuK3gWQOV24cAHHjx/HqVOnAPzvxDkkJAQhISH2g2JBQQE+/PBD5OfnIz8/H8Bftx/09vbGunXrcObMGdx5552oWrUqDhw4gJEjR6Jz586IiooCADRv3tzhdYODg+Hn51ficTVYLBa8+OKL+Pe//40mTZqgQYMGGDduHMLCwtCrVy8AwM6dO/H999/j7rvvRo0aNXD06FGMGzcOjRo1MsSHTmZS0T73yy+/YPny5UhMTESdOnVw8uRJTJo0Cf7+/vZbUButZqXaiZ4ZnHnfGzVq5PA3z507BwBo1qwZqlevrnoGZzjT3o1eX9FgMTIyElOnTsXZs2ftzw8JCQEALF68GD4+PmjRogWsVit27dqF1NRU9OvXDz4+PpU2l9FcuXIFEyZMQI8ePRAaGopz585hzpw5yMnJQZ8+ffQuz2kVtX+9X1/LscZLL72EBx98EJGRkTh16hTS0tLg7e2N/v37e5TR2b7n+PHj9vfj5s2b9omcxo0bo2rVqqoeK5Sqcf/+/fjHP/6BpKQkjBgxAqdPnwbw1wdIRR8YzZkzBxEREYiJiQEAfP3115g6dSpeeOEFAMBtt91WYnsFBgaiVq1aHo8NtcypJaVyGb0+JfYvI+bScgylZX9k9HO8HTt2YOfOnUhISMBtt92GHTt2YPjw4XjkkUdQo0YN1Wt0hjNjjYiICIfnFLXlRo0aoV69eprXfKvr16/joYcewu7du7F27VrcvHnT3nZr1qwJX19fw51vK9VO1qxZgzNnzqBjx47w8/PDxo0bMXHiRLz00kuaZyqixLjLXUY6Fjgz1jh69CiWLFmC7t27o1atWti3bx+GDx+OLl26oGXLlrrn9PLy0rSfVWLOQO82odT837lz5/Dxxx8jPj4eV69eRUZGBj766CN89dVXmuRQYls0bdoUPXv2REpKCubPn4+goCCkpqYiJiYGCQkJqmdQalt069YNbdu2xRNPPIEZM2bAZrNh2LBhuPfeezX56Uml5jCnTJmC5ORkeHl54dNPP8WkSZOwYsUKj/pcZ2vU8nx7+PDh6NSpEyZOnIi+ffviu+++w/z58zF//nyPc7qa290+Xk1KbCut+1mt9q8ZM2agQYMGuOOOO3D16lW8//772LJlC7788kuX6jXSWARQbw7KGZcvX8Zrr72Gf/3rX/Y28fLLL6Nx48ZISkpS/fXdVdE+V9ZcZkREBBo0aKBprWVx5hxP63NVIx0rNmzYABFBdHQ0jhw5gpEjRyImJgaPP/645rkBICMjA82aNUOdOnWwY8cOpKSkYPjw4YiOjla8nltpOX+jVD/rTgalPu969tlnMXv2bKSkpOD555/H4cOHMXHiRFXmA8lAdLpzFZlcRkaGACjxLy0tTUREMjMzS10OQH799VcREdmyZYvExsZKtWrVxM/PT5o0aSKjRo2y346wNGlpadKqVSvV8xWx2Wwybtw4qVu3rlitVunatatkZ2fbl+/bt08SEhKkZs2aYrVaJSoqSoYOHSonT57UrMa/i4r2uZycHLnvvvskODhYfHx8pF69ejJgwABdfwZDr3aiZQZ33vei3FplcFZF7V1vFdVX1rYqPhRYtmyZtG3bVqpWrSqBgYFy++23y8SJExX7eQx3KJHLaP7880/p3bu3hIWFia+vr4SGhkqPHj0UvQ2+Fipq/3q/vpZjjX79+kloaKj4+vpKeHi49OvXT44cOaJITmf6nsGDB5eaMzMz0+2cWteYlpZW6vLIyEj735g1a5bccccdEhAQIEFBQdKmTRuZO3duubdPjouLk5SUlEqVU2tK5DJ6fWrtX3rnupXaYyi9+iOjneP98MMP0qFDB3uGZs2aycSJE3X/6bPi3Blr6P2Tubcqqqe8/cmI59tKtJMvvvhCWrdubR+Tt2rVStLT03X9GWklxl2eMPKx4NaxxvHjx6VLly72/bJx48YycuRIycvLM0zOW6nZzyoxZ2CENqHE/N/Zs2elY8eOEhgYKAEBAdK1a1f573//q1kGpeZv8vLy5IknnpDq1atLzZo1pXfv3nL8+HHNcig1F5uTkyP//Oc/pWrVqlK3bl157LHH5Pz585pkUGpbJCQk2McjHTp0kHXr1mlWo9Zz+2vWrJHmzZuL1WqVmJgY1X7SsaLcnvTxalFiW2ndz2q1f7311lvSqFEj8fPzk5o1a0p8fLxs2bLFrZqNNBZRcw6qIgUFBZKYmCh16tQRHx8fiYyMlCFDhsjp06c1eX13uTOHCUBWrlypWY0VceYcT+tzVSMdK5YvXy4NGzYUX19fCQkJkWHDhklubq4uuUVERo0aJXXr1hUfHx9p0qSJTJs2TWw2myr1lEar+Rsl+1lXMyj5edf27dulQ4cOYrVapWHDhjJhwoQyfz6dzMEiIgIiIiIiIiIiIiIiIiIiIiIiIiITqvjHGImIiIiIiIiIiIiIiIiIiIiIiCopXiBFRERERERERERERERERERERESmxQukiIiIiIiIiIiIiIiIiIiIiIjItHiBFBERERERERERERERERERERERmRYvkCIiIiIiIiIiIiIiIiIiIiIiItPiBVJERERERERERERERERERERERGRavECKiIiIiIiIiIiIiIiIiIiIiIhMixdIERERERERERERERERERERERGRafECKSIiIiIiIiIiIiIiIiIiIiIiMi1eIEVERERERERERERERERERERERKbFC6SIiIiIiIiIiIiIiIiIiIiIiMi0/h+G0ITvz6f4kgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACUgAAAM8CAYAAACP+9iIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdkklEQVR4nOzdYayV9X3A8d9B9GAn50zacC/CRVhpKRRBRu242FZcsIwQA1lqjEmDa8XEBhadW4x0S5vpmktjqfaFBY3VO2cYnW2ADGqRYpBYcC1UMnQtG6tyUbnoUr1HbrYj5Z69WHbba7lwnwt45efnkzwvznP+//P8nvff/E+p0Wg0AgAAAAAAAAAAIKFhQz0AAAAAAAAAAADA2SKQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSOqcCqR07dsS1114bl1xySZRKpdiwYUPh32g0GvGNb3wjPvrRj0a5XI6xY8fG1772tTM/LAAAAAAAAAAAMOSGD/UARXR3d8eMGTPii1/8Yvzpn/7poH7j1ltvjSeffDK+8Y1vxGWXXRa/+tWv4le/+tUZnhQAAAAAAAAAAHgvKDUajcZQDzEYpVIp1q9fH4sXL+69V6/X46//+q/jH//xH+PNN9+MadOmxde//vWYO3duRET8/Oc/j+nTp8fzzz8fkydPHprBAQAAAAAAAACAd8059Rd7p7J8+fLYtWtXrFu3Lv71X/81rrvuuviTP/mT+I//+I+IiPjnf/7n+IM/+IPYtGlTTJw4MSZMmBBLly51ghQAAAAAAAAAACSVJpDq6OiIRx55JB5//PH49Kc/HR/+8Ifjr/7qr+JTn/pUPPLIIxER8ctf/jIOHjwYjz/+eDz66KPR3t4ee/bsic997nNDPD0AAAAAAAAAAHA2DB/qAc6Uffv2xfHjx+OjH/1on/v1ej0++MEPRkRET09P1Ov1ePTRR3vXfec734lZs2bF/v37/e0eAAAAAAAAAAAkkyaQOnr0aJx33nmxZ8+eOO+88/p8d9FFF0VExJgxY2L48OF9IqopU6ZExP+dQCWQAgAAAAAAAACAXNIEUjNnzozjx4/Ha6+9Fp/+9KdPuObKK6+MX//61/Gf//mf8eEPfzgiIv793/89IiIuvfTSd21WAAAAAAAAAADg3VFqNBqNoR5ioI4ePRoHDhyIiP8Lor75zW/G1VdfHaNGjYrx48fH5z//+fjxj38cq1atipkzZ8brr78e27Zti+nTp8fChQujp6cnrrjiirjooovivvvui56enli2bFlUKpV48sknh/jtAAAAAAAAAACAM+2cCqS2b98eV1999e/cv/HGG6O9vT2OHTsWf/d3fxePPvpovPLKK/GhD30oZs+eHX/7t38bl112WUREvPrqq/Hnf/7n8eSTT8bv/d7vxYIFC2LVqlUxatSod/t1AAAAAAAAAACAs+ycCqQAAAAAAAAAAACKGDbUAwAAAAAAAAAAAJwtw4d6gIHo6emJV199NUaOHBmlUmmoxwEAAAAAAAAAAIZYo9GIt956Ky655JIYNqz/c6LOiUDq1VdfjZaWlqEeAwAAAAAAAAAAeI85dOhQjBs3rt/vz4lAauTIkRHxfy9TqVSGeBoAAAAAAAAAAGCo1Wq1aGlp6W2L+nNOBFL//7d6lUpFIAUAAAAAAAAAAPT6/7aoP/3/+R4AAAAAAAAAAMA5TiAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQ1fKgHgPeaCXduHuoR+vXSyoVDPQIAAAAAAAAAwDnFCVIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQVqFAavXq1TF9+vSoVCpRqVSitbU1nnjiiX7Xt7e3R6lU6nONGDHitIcGAAAAAAAAAAAYiOFFFo8bNy5WrlwZH/nIR6LRaMTf//3fx6JFi+K5556Lj3/84yfcU6lUYv/+/b2fS6XS6U0MAAAAAAAAAAAwQIUCqWuvvbbP56997WuxevXqePbZZ/sNpEqlUjQ3Nw9+QgAAAAAAAAAAgEEq9Bd7v+348eOxbt266O7ujtbW1n7XHT16NC699NJoaWmJRYsWxQsvvHDK367X61Gr1fpcAAAAAAAAAAAARRUOpPbt2xcXXXRRlMvluOWWW2L9+vUxderUE66dPHlyPPzww7Fx48Z47LHHoqenJ+bMmRMvv/zySZ/R1tYW1Wq192ppaSk6JgAAAAAAAAAAQJQajUajyIa33347Ojo6oqurK773ve/FQw89FE8//XS/kdRvO3bsWEyZMiVuuOGGuPvuu/tdV6/Xo16v936u1WrR0tISXV1dUalUiowLhU24c/NQj9Cvl1YuHOoRAAAAAAAAAADeE2q1WlSr1VM2RcOL/vAFF1wQkyZNioiIWbNmxU9/+tP41re+FQ888MAp955//vkxc+bMOHDgwEnXlcvlKJfLRUcDAAAAAAAAAADoo/Bf7L1TT09Pn9OeTub48eOxb9++GDNmzOk+FgAAAAAAAAAA4JQKnSC1YsWKWLBgQYwfPz7eeuutWLt2bWzfvj22bNkSERFLliyJsWPHRltbW0RE3HXXXTF79uyYNGlSvPnmm3HPPffEwYMHY+nSpWf+TQAAAAAAAAAAAN6hUCD12muvxZIlS+Lw4cNRrVZj+vTpsWXLlrjmmmsiIqKjoyOGDfvNoVRvvPFG3HzzzdHZ2RkXX3xxzJo1K3bu3BlTp049s28BAAAAAAAAAABwAqVGo9EY6iFOpVarRbVaja6urqhUKkM9DslNuHPzUI/Qr5dWLhzqEQAAAAAAAAAA3hMG2hQN6/cbAAAAAAAAAACAc5xACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBahQKp1atXx/Tp06NSqUSlUonW1tZ44oknTrrn8ccfj4997GMxYsSIuOyyy+IHP/jBaQ0MAAAAAAAAAAAwUIUCqXHjxsXKlStjz549sXv37vjjP/7jWLRoUbzwwgsnXL9z58644YYb4qabbornnnsuFi9eHIsXL47nn3/+jAwPAAAAAAAAAABwMqVGo9E4nR8YNWpU3HPPPXHTTTf9znfXX399dHd3x6ZNm3rvzZ49Oy6//PJYs2bNgJ9Rq9WiWq1GV1dXVCqV0xkXTmnCnZuHeoR+vbRy4VCPAAAAAAAAAADwnjDQpqjQCVK/7fjx47Fu3bro7u6O1tbWE67ZtWtXzJs3r8+9+fPnx65du0762/V6PWq1Wp8LAAAAAAAAAACgqMKB1L59++Kiiy6Kcrkct9xyS6xfvz6mTp16wrWdnZ3R1NTU515TU1N0dnae9BltbW1RrVZ7r5aWlqJjAgAAAAAAAAAAFA+kJk+eHHv37o1/+Zd/iS996Utx4403xr/927+d0aFWrFgRXV1dvdehQ4fO6O8DAAAAAAAAAADvD8OLbrjgggti0qRJERExa9as+OlPfxrf+ta34oEHHvidtc3NzXHkyJE+944cORLNzc0nfUa5XI5yuVx0NAAAAAAAAAAAgD4KnyD1Tj09PVGv10/4XWtra2zbtq3Pva1bt0Zra+vpPhYAAAAAAAAAAOCUCp0gtWLFiliwYEGMHz8+3nrrrVi7dm1s3749tmzZEhERS5YsibFjx0ZbW1tERNx6661x1VVXxapVq2LhwoWxbt262L17dzz44INn/k0AAAAAAAAAAADeoVAg9dprr8WSJUvi8OHDUa1WY/r06bFly5a45pprIiKio6Mjhg37zaFUc+bMibVr18bf/M3fxJe//OX4yEc+Ehs2bIhp06ad2bcAAAAAAAAAAAA4gVKj0WgM9RCnUqvVolqtRldXV1QqlaEeh+Qm3Ll5qEfo10srFw71CAAAAAAAAAAA7wkDbYqG9fsNAAAAAAAAAADAOU4gBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACCtQoFUW1tbXHHFFTFy5MgYPXp0LF68OPbv33/SPe3t7VEqlfpcI0aMOK2hAQAAAAAAAAAABqJQIPX000/HsmXL4tlnn42tW7fGsWPH4rOf/Wx0d3efdF+lUonDhw/3XgcPHjytoQEAAAAAAAAAAAZieJHFP/zhD/t8bm9vj9GjR8eePXviM5/5TL/7SqVSNDc3D25CAAAAAAAAAACAQSp0gtQ7dXV1RUTEqFGjTrru6NGjcemll0ZLS0ssWrQoXnjhhZOur9frUavV+lwAAAAAAAAAAABFDTqQ6unpidtuuy2uvPLKmDZtWr/rJk+eHA8//HBs3LgxHnvssejp6Yk5c+bEyy+/3O+etra2qFarvVdLS8tgxwQAAAAAAAAAAN7HSo1GozGYjV/60pfiiSeeiGeeeSbGjRs34H3Hjh2LKVOmxA033BB33333CdfU6/Wo1+u9n2u1WrS0tERXV1dUKpXBjAsDNuHOzUM9Qr9eWrlwqEcAAAAAAAAAAHhPqNVqUa1WT9kUDR/Mjy9fvjw2bdoUO3bsKBRHRUScf/75MXPmzDhw4EC/a8rlcpTL5cGMBgAAAAAAAAAA0KvQX+w1Go1Yvnx5rF+/Pp566qmYOHFi4QceP3489u3bF2PGjCm8FwAAAAAAAAAAoIhCJ0gtW7Ys1q5dGxs3boyRI0dGZ2dnRERUq9W48MILIyJiyZIlMXbs2Ghra4uIiLvuuitmz54dkyZNijfffDPuueeeOHjwYCxduvQMvwoAAAAAAAAAAEBfhQKp1atXR0TE3Llz+9x/5JFH4s/+7M8iIqKjoyOGDfvNwVRvvPFG3HzzzdHZ2RkXX3xxzJo1K3bu3BlTp049vckBAAAAAAAAAABOodRoNBpDPcSp1Gq1qFar0dXVFZVKZajHIbkJd24e6hH69dLKhUM9AgAAAAAAAADAe8JAm6Jh/X4DAAAAAAAAAABwjhNIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEirUCDV1tYWV1xxRYwcOTJGjx4dixcvjv37959y3+OPPx4f+9jHYsSIEXHZZZfFD37wg0EPDAAAAAAAAAAAMFCFAqmnn346li1bFs8++2xs3bo1jh07Fp/97Geju7u73z07d+6MG264IW666aZ47rnnYvHixbF48eJ4/vnnT3t4AAAAAAAAAACAkyk1Go3GYDe//vrrMXr06Hj66afjM5/5zAnXXH/99dHd3R2bNm3qvTd79uy4/PLLY82aNQN6Tq1Wi2q1Gl1dXVGpVAY7LgzIhDs3D/UI/Xpp5cKhHgEAAAAAAAAA4D1hoE1RoROk3qmrqysiIkaNGtXvml27dsW8efP63Js/f37s2rWr3z31ej1qtVqfCwAAAAAAAAAAoKhBB1I9PT1x2223xZVXXhnTpk3rd11nZ2c0NTX1udfU1BSdnZ397mlra4tqtdp7tbS0DHZMAAAAAAAAAADgfWzQgdSyZcvi+eefj3Xr1p3JeSIiYsWKFdHV1dV7HTp06Iw/AwAAAAAAAAAAyG/4YDYtX748Nm3aFDt27Ihx48addG1zc3McOXKkz70jR45Ec3Nzv3vK5XKUy+XBjAYAAAAAAAAAANCr0AlSjUYjli9fHuvXr4+nnnoqJk6ceMo9ra2tsW3btj73tm7dGq2trcUmBQAAAAAAAAAAKKjQCVLLli2LtWvXxsaNG2PkyJHR2dkZERHVajUuvPDCiIhYsmRJjB07Ntra2iIi4tZbb42rrroqVq1aFQsXLox169bF7t2748EHHzzDrwIAAAAAAAAAANBXoROkVq9eHV1dXTF37twYM2ZM7/Xd7363d01HR0ccPny49/OcOXNi7dq18eCDD8aMGTPie9/7XmzYsCGmTZt25t4CAAAAAAAAAADgBAqdINVoNE65Zvv27b9z77rrrovrrruuyKMAAAAAAAAAAABOW6ETpAAAAAAAAAAAAM4lAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaRUOpHbs2BHXXnttXHLJJVEqlWLDhg0nXb99+/YolUq/c3V2dg52ZgAAAAAAAAAAgAEpHEh1d3fHjBkz4v777y+0b//+/XH48OHea/To0UUfDQAAAAAAAAAAUMjwohsWLFgQCxYsKPyg0aNHx+///u8X3gcAAAAAAAAAADBYhU+QGqzLL788xowZE9dcc038+Mc/Punaer0etVqtzwUAAAAAAAAAAFDUWQ+kxowZE2vWrInvf//78f3vfz9aWlpi7ty58bOf/azfPW1tbVGtVnuvlpaWsz0mAAAAAAAAAACQUKnRaDQGvblUivXr18fixYsL7bvqqqti/Pjx8Q//8A8n/L5er0e9Xu/9XKvVoqWlJbq6uqJSqQx2XBiQCXduHuoR+vXSyoVDPQIAAAAAAAAAwHtCrVaLarV6yqZo+Ls4U69PfvKT8cwzz/T7fblcjnK5/C5OxJnwXg6LIsRFAAAAAAAAAADvR2f9L/ZOZO/evTFmzJiheDQAAAAAAAAAAPA+UvgEqaNHj8aBAwd6P7/44ouxd+/eGDVqVIwfPz5WrFgRr7zySjz66KMREXHffffFxIkT4+Mf/3j8z//8Tzz00EPx1FNPxZNPPnnm3gIAAAAAAAAAAOAECgdSu3fvjquvvrr38+233x4RETfeeGO0t7fH4cOHo6Ojo/f7t99+O/7yL/8yXnnllfjABz4Q06dPjx/96Ed9fgMAAAAAAAAAAOBsKBxIzZ07NxqNRr/ft7e39/l8xx13xB133FF4MAAAAAAAAAAAgNM1bKgHAAAAAAAAAAAAOFsEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIK3hQz0AQH8m3Ll5qEfo10srFw71CAAAAAAAAADAADhBCgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSKhxI7dixI6699tq45JJLolQqxYYNG065Z/v27fGHf/iHUS6XY9KkSdHe3j6IUQEAAAAAAAAAAIopHEh1d3fHjBkz4v777x/Q+hdffDEWLlwYV199dezduzduu+22WLp0aWzZsqXwsAAAAAAAAAAAAEUML7phwYIFsWDBggGvX7NmTUycODFWrVoVERFTpkyJZ555Ju69996YP3/+CffU6/Wo1+u9n2u1WtExAQAAAAAAAAAAip8gVdSuXbti3rx5fe7Nnz8/du3a1e+etra2qFarvVdLS8vZHhMAAAAAAAAAAEjorAdSnZ2d0dTU1OdeU1NT1Gq1+O///u8T7lmxYkV0dXX1XocOHTrbYwIAAAAAAAAAAAkV/ou9d0O5XI5yuTzUYwAAAAAAAAAAAOe4s36CVHNzcxw5cqTPvSNHjkSlUokLL7zwbD8eAAAAAAAAAAB4HzvrgVRra2ts27atz72tW7dGa2vr2X40AAAAAAAAAADwPlc4kDp69Gjs3bs39u7dGxERL774Yuzduzc6OjoiImLFihWxZMmS3vW33HJL/PKXv4w77rgjfvGLX8S3v/3t+Kd/+qf4i7/4izPzBgAAAAAAAAAAAP0oHEjt3r07Zs6cGTNnzoyIiNtvvz1mzpwZX/nKVyIi4vDhw72xVETExIkTY/PmzbF169aYMWNGrFq1Kh566KGYP3/+GXoFAAAAAAAAAACAExtedMPcuXOj0Wj0+317e/sJ9zz33HNFHwUAAAAAAAAAAHBaCp8gBQAAAAAAAAAAcK4QSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABIa1CB1P333x8TJkyIESNGxB/90R/FT37yk37Xtre3R6lU6nONGDFi0AMDAAAAAAAAAAAMVOFA6rvf/W7cfvvt8dWvfjV+9rOfxYwZM2L+/Pnx2muv9bunUqnE4cOHe6+DBw+e1tAAAAAAAAAAAAADUTiQ+uY3vxk333xzfOELX4ipU6fGmjVr4gMf+EA8/PDD/e4plUrR3NzcezU1NZ30GfV6PWq1Wp8LAAAAAAAAAACgqEKB1Ntvvx179uyJefPm/eYHhg2LefPmxa5du/rdd/To0bj00kujpaUlFi1aFC+88MJJn9PW1hbVarX3amlpKTImAAAAAAAAAABARBQMpP7rv/4rjh8//jsnQDU1NUVnZ+cJ90yePDkefvjh2LhxYzz22GPR09MTc+bMiZdffrnf56xYsSK6urp6r0OHDhUZEwAAAAAAAAAAICIihp/tB7S2tkZra2vv5zlz5sSUKVPigQceiLvvvvuEe8rlcpTL5bM9GgAAAAAAAAAAkFyhE6Q+9KEPxXnnnRdHjhzpc//IkSPR3Nw8oN84//zzY+bMmXHgwIEijwYAAAAAAAAAACisUCB1wQUXxKxZs2Lbtm2993p6emLbtm19Tok6mePHj8e+fftizJgxxSYFAAAAAAAAAAAoqPBf7N1+++1x4403xic+8Yn45Cc/Gffdd190d3fHF77whYiIWLJkSYwdOzba2toiIuKuu+6K2bNnx6RJk+LNN9+Me+65Jw4ePBhLly49s28CAAAAAAAAAADwDoUDqeuvvz5ef/31+MpXvhKdnZ1x+eWXxw9/+MNoamqKiIiOjo4YNuw3B1O98cYbcfPNN0dnZ2dcfPHFMWvWrNi5c2dMnTr1zL0FAAAAAAAAAADACRQOpCIili9fHsuXLz/hd9u3b+/z+d5774177713MI8BAAAAAAAAAAA4LcNOvQQAAAAAAAAAAODcJJACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAAAAAAAAAAAgLYEUAAAAAAAAAACQlkAKAAAAAAAAAABISyAFAAAAAAAAAACkJZACAAAAAAAAAADSEkgBAAAAAAAAAABpCaQAAAAAAAAAAIC0BFIAAAAAAAAAAEBaAikAAAAAAAAAACAtgRQAAAAAAAAAAJCWQAoAAAAAAAAAAEhLIAUAAAAAAAAAAKQlkAIAAAAAAAAAANISSAEAAAAAAAAAAGkJpAAAAAAAAAAAgLQEUgAAAAAAAAAAQFoCKQAAAAAAAAAAIC2BFAAAAAAAAAAAkJZACgAAAAAAAAAASEsgBQAAAAAAAAAApCWQAgAAAAAAAAAA0hJIAQAAAAAAAAAAaQmkAAAAAAAAAACAtARSAAAAAAAAAABAWgIpAADgf9u77/AoyvV94PcmJJuCoYcUSEJNUDooBNQkB0wiKuUcAQEFLCB+UQNcUqJgUA+IFEEEDOgxXKIgoCBFBClBpRwUISAgoQgCQbpJhEgo+/z+8Jc9WdK2TGO8P9fFH+zOZp57Z9533nl3dpaIiIiIiIiIiIiIiMi0eIEUERERERERERERERERERERERGZFi+QIiIiIiIiIiIiIiIiIiIiIiIi0+IFUkREREREREREREREREREREREZFq8QIqIiIiIiIiIiIiIiIiIiIiIiEyLF0gREREREREREREREREREREREZFp8QIpIiIiIiIiIiIiIiIiIiIiIiIyLV4gRUREREREREREREREREREREREplVJ7wKISHlRY77Uu4RyHZ/0kN4lEBERERERERERERERERER0d8E7yBFRERERERERERERERERERERESmxQukiIiIiIiIiIiIiIiIiIiIiIjItHiBFBERERERERERERERERERERERmRYvkCIiIiIiIiIiIiIiIiIiIiIiItOqpHcBRERE5JyoMV/qXUK5jk96SO8SiIiIiIiIiIiIiIiIiIhK4B2kiIiIiIiIiIiIiIiIiIiIiIjItHiBFBERERERERERERERERERERERmRYvkCIiIiIiIiIiIiIiIiIiIiIiItPiBVJERERERERERERERERERERERGRaldx50ezZszFlyhScOXMGLVq0wLvvvot77rmnzOWXLl2KcePG4fjx42jUqBHeeustdOnSxe2iiYhuF1FjvtS7hDIdn/SQ3iVoituCyJGR2wTAdkH6MHK7YJsgIiIiIiIiIiIiInKfyxdILV68GCNGjEB6ejratWuHGTNmICkpCdnZ2QgODi6x/LZt29CnTx+8+eabePjhh7Fw4UJ0794du3btQtOmTRUJQURE6jHyh8UAPzAmIiIiovIZeTzLsSwREREREREREZE2XL5A6u2338agQYPw5JNPAgDS09Px5Zdf4sMPP8SYMWNKLP/OO+8gOTkZI0eOBAC88cYbWL9+PWbNmoX09PRS11FYWIjCwkL7//Py8gAA+fn5rpZLGrIVFuhdQrmc3X+MnMMMGQBz5GAG4zBDDjNkAP5ex+mmaev0LqFM+15Lcmo57k+kJCO3CcAc7cLZNmGWbWEGRt4Wf6ftAJijbRORORn5WAH8/Y4XREREREREdHsqmmMTkXKXs0hFSxRz7do1BAQE4LPPPkP37t3tjw8YMAC5ublYsWJFiddERERgxIgRGDZsmP2xtLQ0fPHFF9izZ0+p6xk/fjxee+01Z8siIiIiIiIiIiIiIiIiIiIiIqK/qZMnT6JOnTplPu/SHaQuXLiAmzdvonbt2g6P165dGwcPHiz1NWfOnCl1+TNnzpS5ntTUVIwYMcL+f5vNhkuXLqFGjRqwWCyulEy3qfz8fNStWxcnT55EUFCQ3uW4zQw5mME4zJCDGYzDDDnMkAEwRw5mMA4z5DBDBsAcOZjBOMyQgxmMwww5zJABMEcOZjAOM+QwQwbAHDmYwTjMkIMZjMMMOcyQATBHDmYwDjPkMEMGwBw5mIFuVyKCP/74A2FhYeUu5/JP7GnBarXCarU6PFa1alV9iiFdBQUFmaLjMkMOZjAOM+RgBuMwQw4zZADMkYMZjMMMOcyQATBHDmYwDjPkYAbjMEMOM2QAzJGDGYzDDDnMkAEwRw5mMA4z5GAG4zBDDjNkAMyRgxmMwww5zJABMEcOZqDbUZUqVSpcxsuVP1izZk14e3vj7NmzDo+fPXsWISEhpb4mJCTEpeWJiIiIiIiIiIiIiIiIiIiIiIiU4tIFUr6+vmjTpg02btxof8xms2Hjxo2IjY0t9TWxsbEOywPA+vXry1yeiIiIiIiIiIiIiIiIiIiIiIhIKS7/xN6IESMwYMAAtG3bFvfccw9mzJiBK1eu4MknnwQA9O/fH+Hh4XjzzTcBACkpKYiLi8O0adPw0EMP4dNPP8XOnTsxb948ZZOQqVitVqSlpZX4qcXbjRlyMINxmCEHMxiHGXKYIQNgjhzMYBxmyGGGDIA5cjCDcZghBzMYhxlymCEDYI4czGAcZshhhgyAOXIwg3GYIQczGIcZcpghA2COHMxgHGbIYYYMgDlyMAOZnUVExNUXzZo1C1OmTMGZM2fQsmVLzJw5E+3atQMAxMfHIyoqCvPnz7cvv3TpUowdOxbHjx9Ho0aNMHnyZHTp0kWxEERERERERERERERERERERERERKVx6wIpIiIiIiIiIiIiIiIiIiIiIiKi24GX3gUQERERERERERERERERERERERGphRdIERERERERERERERERERERERGRafECKSIiIiIiIiIiIiIiIiIiIiIiMi1eIEVERERERERERERERERERERERKbFC6RIMQMHDsT48eMBAMuWLUNiYiJq1KgBi8WCrKwsh2UvXbqEF154AdHR0fD390dERARefPFF5OXl2Ze5ePEikpOTERYWBqvVirp16+L5559Hfn5+qevfunUrKlWqhJYtW5ZZl1aKrzM+Ph7z58/XdP3OKF6jiODVV19FaGgo/P390blzZxw+fNhh+a5duyIiIgJ+fn4IDQ3FE088gdOnT9uf37x5M6KiojRM4No+BwDPPvssGjRoAH9/f9SqVQvdunXDwYMH7c8fP34cFovFMDUr1U7mz5+P+Ph4XTIAFb/vxV28eBF16tSBxWJBbm6uahmc5Wo7sVgsOH78uCHrO378OJ5++mnUq1cP/v7+aNCgAdLS0nDt2jX7MtnZ2UhISEDt2rXh5+eH+vXrY+zYsbh+/bp9mfHjx2PgwIG3VS49+qfSFM81fvx4xMTEIDAwENWqVUPnzp2xY8cOh+W13p+c4Wr7j4qKwubNm3VZv5ZjjfHjx8NisTj8i4mJcVjGlffC1b5nwoQJ6NChAwICAlC1atUSf0+NY4XSNe7Zswd9+vRB3bp14e/vjyZNmuCdd95xWGbLli3o2LEjatSoAX9/f8TExGD69Oll1jhp0iRYLBYMGzbM4XE9t4UzObU45imdS+kxlFH3L0/PK5TOVZxaYyg9+qPitDrHczVnVFRUiX5/0qRJ9uf1Gnu4OtYoUlhYiJYtW5Y4nup5jnf9+nWMHj0azZo1Q2BgIMLCwtC/f3+Hc1DAGOeparTtW/cvi8WCTz/91P681scKJcZdrh4rjHosKK6ssUZ8fHyJ7TdkyJBS3ws9chanRj+rxpyBHm1C6XkzAFiyZAlatmyJgIAAREZGYsqUKQ7P3y7zN/Pnz0fz5s3h5+eH4OBgDB061P6cGv2uGttCRDB16lQ0btwYVqsV4eHhmDBhgkNGo2+LjRs3okOHDrjjjjsQEhKC0aNH48aNG/bnXd0WRj3fBoCcnBw8/vjj9v65WbNm2Llzp/15T+bfXd02rvTxalF6WwHq97N67F+bN28uNdeZM2dKrau8mo00FlF6DsoZxd+LgQMHllh/cnKyw/JGmNN0tW0XERE8+OCDsFgs+OKLL+yPa9G2S+PqOZ7a56pGPVb88ccfGDZsGCIjI+Hv748OHTrghx9+cFhGy2PF0aNH0aNHD9SqVQtBQUHo1asXzp4967CM0u1Ej/kbT/tZTzIo9XkXAOTm5mLo0KEIDQ2F1WpF48aNsWbNGrcy0O2BF0iRKq5cuYJ7770Xb731VqnPnz59GqdPn8bUqVOxb98+zJ8/H2vXrsXTTz9tX8bLywvdunXDypUrcejQIcyfPx8bNmxwOOEokpubi/79+6NTp06qZTKzyZMnY+bMmUhPT8eOHTsQGBiIpKQkXL161b5MQkIClixZguzsbHz++ec4evQoHn30UR2rdlTRPgcAbdq0QUZGBn7++WesW7cOIoLExETcvHlTw0r/R+t2okcGwLX3/emnn0bz5s3VLNltzrQTPVVU38GDB2Gz2TB37lzs378f06dPR3p6Ol5++WX73/Dx8UH//v3x9ddfIzs7GzNmzMD777+PtLQ0vWIpksuIGjdujFmzZuGnn37Cli1bEBUVhcTERJw/f17v0pzmTPvXc/1ajzXuuusu/Pbbb/Z/W7ZsUSSnM33PtWvX0LNnTzz33HOl/g21jxVK1Pjjjz8iODgYH3/8Mfbv349XXnkFqampmDVrln2ZwMBAPP/88/j222/x888/Y+zYsRg7dizmzZtX4u/98MMPmDt3rqLHFK1yak2JXEavT+n9yyi5itNiDKV1f6TXOZ6zY77XX3/dod9/4YUXNK2zIq6MNUaNGoWwsDAdqixbQUEBdu3ahXHjxmHXrl1YtmwZsrOz0bVrV4fljHaeqmTbzsjIcNjHunfvrnL1ZVNi3OUJIx4LKhprDBo0yGH7TZ482TA5i2jRzyo5Z6Bnm1Bi3uyrr75Cv379MGTIEOzbtw9z5szB9OnTNRsHKrUt3n77bbzyyisYM2YM9u/fjw0bNiApKUmLCACUm8NMSUnBBx98gKlTp+LgwYNYuXIl7rnnHk0yKLEt9uzZgy5duiA5ORm7d+/G4sWLsXLlSowZM0aTGrU83/7999/RsWNH+Pj44KuvvsKBAwcwbdo0VKtWTZGsxTk7z+FOH68WJY/RWvWzWu9f2dnZDrmCg4NdrtloYxG15qCclZyc7LD+RYsWabp+V7kyhzljxgxdLoRyhrPneFqdqxrpWPHMM89g/fr1WLBgAX766SckJiaic+fOyMnJUS7w/1dR7itXriAxMREWiwWbNm3C1q1bce3aNTzyyCOw2WyK11MaredvlOhnXc2g1Odd165dwwMPPIDjx4/js88+Q3Z2Nt5//32Eh4d7nIEMTIgUMmDAAElLS3N47NixYwJAdu/eXeHrlyxZIr6+vnL9+vUyl3nnnXekTp06JR7v3bu3jB07VtLS0qRFixYV1qW24uuMi4uTjIwMTdfvjKIabTabhISEyJQpU+zP5ebmitVqlUWLFpX5+hUrVojFYpFr166JiEhmZqZERkaqXbYDT/e5PXv2CAA5cuSIw2vVpEc7ycjIkLi4ODcrLknp973InDlzJC4uTjZu3CgA5Pfff7c/p3QGZ7naTgDIsWPHDFvfrSZPniz16tUrdx3Dhw+Xe++91/7/tLQ0GTBggMe1l0fpXHr0T6Up73iUl5cnAGTDhg32x7Ten5zhavuPjIyUzMxM3dZ/K7XGGqU9ditX3gt320BGRoZUqVLFqXV4eqzQosb/+7//k4SEhHKX6dGjhzz++OMOj/3xxx/SqFEjWb9+vcTFxUlKSorD80bbFrfm1OKYp3QupcdQRt2/PD2vUCuXmmMoPfqjIlqe47maMzIyUqZPn17m39Nr7OHqWENEZM2aNRITEyP79+8vcTw1yjleke+//14AyK+//lrm6/U4T1WjnQCQ5cuXl7lOLY8VxXky7nL1WGHUY4FIxWON0h4rrvh7oWdOtfpZNeYM9GgTSs+b9enTRx599FGHZWbOnCl16tQRm82mSg6lt8WlS5fE39+/xLGkODX6XaW3xYEDB6RSpUpy8ODBMl9j9G2Rmpoqbdu2dVhm5cqV4ufnJ/n5+SLi+rYw6vn26NGjHealSuPJ/LuruV3p49WixrZSu5/VY//KzMwscX7kTF23Pme0sYjSc1DOKP4+DRgwQLp161bu8kaY03Rnn9u9e7eEh4fLb7/9VqJNaNG2S+PqOZ7a56pGPFYUFBSIt7e3rF692mH51q1byyuvvGL/v1bHinXr1omXl5fk5eXZH8vNzRWLxSLr16+3P6Z0O9Fj/sbTflapDEXc+bzrvffek/r169vHiZ5moNsD7yBFhpGXl4egoCBUqlSp1OdPnz6NZcuWIS4uzuHxjIwM/PLLL7re4eR2duzYMZw5cwadO3e2P1alShW0a9cO27dvL/U1ly5dwieffIIOHTrAx8dHq1IVdeXKFWRkZKBevXqoW7eu3uU4zd12YhRlve8HDhzA66+/jo8++gheXsY7NLnTTrTkbn15eXmoXr16mc8fOXIEa9eu1W1/UiuX0Vy7dg3z5s1DlSpV0KJFC73LMTU1xxqHDx9GWFgY6tevj379+uHEiRMe16tW36PksULN/rGitrx7925s27atRI6hQ4fioYcecqjJU3rmVJNZj2/OcHf/UoKSubQaQ2ndH+l1judKzkmTJqFGjRpo1aoVpkyZ4vCTNkZT1ljj7NmzGDRoEBYsWICAgAAdK3ROXl4eLBZLmT9Lp/d5qtLtZOjQoahZsybuuecefPjhhxARJctVXUXjLmcZ8VjgzFjjk08+Qc2aNdG0aVOkpqaioKCg3Fq0zmnUubTy5mr0ahNKzZsVFhbCz8/PYTl/f3+cOnUKv/76q3oB3FTatli/fj1sNhtycnLQpEkT1KlTB7169cLJkyc1qUmpbbFq1SrUr18fq1evRr169RAVFYVnnnkGly5d0iSHq0rbFmXtT1evXsWPP/6oR5mqnW+vXLkSbdu2Rc+ePREcHIxWrVrh/fffV7x+V7jaxxtNWdvKyGMPT+bEW7ZsidDQUDzwwAPYunWry+s24lhEjTkoV2zevBnBwcGIjo7Gc889h4sXL2q6fjUUFBSgb9++mD17NkJCQvQup0LlzScb+VxVjWPFjRs3cPPmzVKPi1rfXQ346xhtsVhgtVrtj/n5+cHLy0uTevSYT/a0n72Vlp93rVy5ErGxsRg6dChq166Npk2bYuLEibr98hBpROcLtMjknL1y+Pz58xIRESEvv/xyiecee+wx8ff3FwDyyCOPyJ9//ml/7tChQxIcHCzZ2dki4tzV8+Ro69atAkBOnz7t8HjPnj2lV69eDo+NGjVKAgICBIC0b99eLly4oGWpTqlon5s9e7YEBgYKAImOji5xFyM9qN1OtODJ+3716lVp3ry5LFiwQEScu+pca660Ez24U9/hw4clKChI5s2bV+K52NhYsVqtAkAGDx4sN2/eVKXuiiidy2hWrVolgYGBYrFYJCwsTL7//nu9S3KLK98S0nP9ao411qxZI0uWLJE9e/bI2rVrJTY2ViIiIuzf3HWXq22gom/8qHGsULrG4n+3UqVKsm7duhLPhYeHi6+vr3h5ecnrr7/u8NyiRYukadOm9mwVfbvXWXrk1IJauZRitP1LKUrl0nIMpWV/pOc5nrM5p02bJpmZmbJnzx557733pGrVqjJ8+HBNanRFeWMNm80mycnJ8sYbb4iI/sfzivz555/SunVr6du3b4nnjHKeqmQ7ef3112XLli2ya9cumTRpklitVnnnnXfUKNslSoy7XGW0Y4EzY425c+fK2rVrZe/evfLxxx9LeHi49OjRwzA59ehnPZ2r0bNNKDVvNnfuXAkICJANGzbIzZs3JTs7W2JiYgSAbNu2TZMsIp5tizfffFN8fHwkOjpa1q5dK9u3b5dOnTpJdHS0FBYWql67Utvi2WefFavVKu3atZNvv/1WMjMzpWXLlhXexUVpnmyLortTLFy4UG7cuCGnTp2S++67TwDIwoULNauxiJrn21arVaxWq6SmpsquXbtk7ty54ufnJ/Pnz/c4X1nKy+1OH68FT7eVHv2s2vvXwYMHJT09XXbu3Clbt26VJ598UipVqiQ//vijS3UabSyi1hyUsxYtWiQrVqyQvXv3yvLly6VJkyZy9913y40bNzRZvyfK2+cGDx4sTz/9tP3/qOCuanqpaD5Zj3NVIxwrYmNjJS4uTnJycuTGjRuyYMEC8fLyksaNG3ucryxl5T537pwEBQVJSkqKXLlyRS5fvizPP/+8/bMWtWk5f6NUP+tpBhH3P++Kjo4Wq9UqTz31lOzcuVM+/fRTqV69uowfP96jDGRsxrtNB/3t5Ofn46GHHsKdd96J8ePHl3h++vTp2LVrF1asWIGjR49ixIgRAICbN2+ib9++eO2119C4cWONq/57GjlyJHbv3o2vv/4a3t7e6N+/v6G+SeKMfv36Yffu3fjmm2/QuHFj9OrVy+F3d43K3XZiFOW976mpqWjSpAkef/xxnav8+8jJyUFycjJ69uyJQYMGlXh+8eLF2LVrFxYuXIgvv/wSU6dO1aFK11WUy2gSEhKQlZWFbdu2ITk5Gb169cK5c+f0LsuU1B5rPPjgg+jZsyeaN2+OpKQkrFmzBrm5uViyZIlakdxi9GNFkX379qFbt25IS0tDYmJiiee/++477Ny5E+np6ZgxYwYWLVoEADh58iRSUlLwySeflPjWmBFVlJPU4e7+ZUS38xjqdj/HGzFiBOLj49G8eXMMGTIE06ZNw7vvvovCwkK9S3NQ3ljj3XffxR9//IHU1FSdq6zY9evX0atXL4gI3nvvvRLPm+E89Vbjxo1Dx44d0apVK4wePRqjRo3ClClT9C7LKRWNu4xA7bHG4MGDkZSUhGbNmqFfv3746KOPsHz5chw9elS1TKUpLadR+9mK5mpulzZRXn80aNAgPP/883j44Yfh6+uL9u3b47HHHgMAQ91Ju7xtYbPZcP36dcycORNJSUlo3749Fi1ahMOHDyMzM1Pnyh2Vty1sNhsKCwvx0Ucf4b777kN8fDz+85//IDMzE9nZ2TpX/j/lbYvExERMmTIFQ4YMgdVqRePGjdGlSxcA2u9Pap9v22w2tG7dGhMnTkSrVq0wePBgDBo0COnp6WpFKpdR+nh3lLetjNrPejInHh0djWeffRZt2rRBhw4d8OGHH6JDhw6YPn26hglK58l5qd5zUI899hi6du2KZs2aoXv37li9ejV++OEHbN68WZP1q2HlypXYtGkTZsyYoXcpFapoPtmo56pqHysWLFgAEUF4eDisVitmzpyJPn366DLGqlWrFpYuXYpVq1ahcuXKqFKlCnJzc9G6dWtDjfmcdTv0s5583mWz2RAcHIx58+ahTZs26N27N1555RXdxhmkET2vziLzq+jK4fz8fImNjZVOnTo5dReD7777zn7V6O+//y4AxNvb2/7PYrHYH9u4caPCaczp6NGjpW6j+++/X1588cUyX3fy5EnNv+XmDFe++VxYWCgBAQGKfrPKHWq2E6148r63aNFCvLy87O3Yy8vL3o5fffVVlSt3jrvtRCuu1JeTkyONGjWSJ554wqk7Qy1YsED8/f11+RaQmrmMqGHDhjJx4kS9y3CZ3necMOpYo23btjJmzBh3Y4mI632PK3f3UepYoXSN+/fvl+DgYKfvOPHGG2/Yvw22fPnyEtsLgFgsFvH29vaoH9M7p1rU3MeUoPf7Xnz/UpJSubQcQ2nVH+l9jufumG/fvn0CQA4ePKhqfZ4qPtbo1q2bw/5T1Gd6e3tL//79da70f65duybdu3eX5s2bO3VnKD3PU9VsJ6tXrxYAcvXqVQUqdZ/S4y5nGOlY4O5Y4/LlywJA1q5dW+Z6tMqpVz+r9FyNlm1C6Xmzorv9FBYWypo1awSAnDt3To3SS+XJtvjwww8FgJw8edJhueDgYE3u4qzUtnj11VelUqVKDssUFBQIAPn6668Vr7ssSrQLm80mOTk5UlBQIAcOHBAAit6d2gjn2xEREQ53dRERmTNnjoSFhXmcryyubBtn+ngtKL2ttOhn9ZgTf+mll6R9+/Yu1WmksUhZlJiD8kTNmjUlPT1dt/U7q6x9LiUlxT6eKz7G8/Lykri4OF1qdVZF88lanKsa4VhR5PLly/Y+oFevXtKlSxeP85XFmWPF+fPn7Xf5rl27tkyePFm1eoroPZ/sTj97Ky0/77r//vulU6dODssUjdG1uEMq6eP2u1SRTCM/Px+JiYnw9fXFypUrnfqmv81mA/DXb7gGBQXhp59+QlZWlv3fkCFDEB0djaysLLRr107tCKZQr149hISEYOPGjfbH8vPzsWPHDsTGxpb5uuLb4nYlIhARQ2fwtJ0Y0a3v++eff449e/bY2/EHH3wA4K9vygwdOlTPUu3cbSdacba+nJwcxMfHo02bNsjIyHDqGwtF3xAt2q+0pGYuIyr6FispR6+xxuXLl3H06FGEhoZ6VL+afY9Sxwola9y/fz8SEhIwYMAATJgwwanXFG83nTp1KrG92rZti379+iErKwve3t4u1VOc3jnVYpbjmzM83b+UpFQuLcdQWvVHep/juZszKysLXl5eCA4OVrU+TxXfp2fOnOmw/6xZswbAX9+s1LtvKlJ056jDhw9jw4YNqFGjRoWv0fNcSM12kpWVhWrVqsFqtXpapmrcGXc5w0jHAnfHGllZWQBQ7thQq5x697POcGauRss2ofS8mbe3N8LDw+Hr64tFixYhNjYWtWrVUqd4D926LTp27AgADndZunTpEi5cuIDIyEjV61FqW3Ts2BE3btxwuOPPoUOHAECTHO4oq11YLBaEhYXB398fixYtQt26ddG6dWtNatLqfLtjx44l7ux16NAhw2wrZ/p4vbmzrfQee6g1J56VleXytjLSWKQ0Ss1BuevUqVO4ePGiodtARcaMGYO9e/c69EfAX3fOycjI0Le4ClS0f+h9rqr13GxgYCBCQ0Px+++/Y926dejWrZsquZxVs2ZNVK1aFZs2bcK5c+fQtWtX1dep93yyO/3srbT8vKtjx444cuSIw+dfhw4dQmhoKHx9fT3KQcZVSe8CyJwuXbqEEydO4PTp0wD+d+IcEhKCkJAQ+0GxoKAAH3/8MfLz85Gfnw/gr9sPent7Y82aNTh79izuvvtuVK5cGfv378fIkSPRsWNHREVFAQCaNm3qsN7g4GD4+fmVeJzKZrFYMGzYMPz73/9Go0aNUK9ePYwbNw5hYWHo3r07AGDHjh344YcfcO+996JatWo4evQoxo0bhwYNGhjiwzOg4n3ul19+weLFi5GYmIhatWrh1KlTmDRpEvz9/e23oDZazUq1Ez0zOPO+N2jQwOFvXrhwAQDQpEkTVK1aVfUMznCmnRi9vqLBYmRkJKZOnYrz58/bXx8SEgIA+OSTT+Dj44NmzZrBarVi586dSE1NRe/eveHj43Pb5jKaK1euYMKECejatStCQ0Nx4cIFzJ49Gzk5OejZs6fe5Tmtovav9/q1HGu89NJLeOSRRxAZGYnTp08jLS0N3t7e6NOnj0cZne17Tpw4YX8/bt68aZ/IadiwISpXrqzqsUKpGvft24d//OMfSEpKwogRI3DmzBkAf32AVPSB0ezZsxEREYGYmBgAwLfffoupU6fixRdfBADccccdJbZXYGAgatSo4fHYUMucWlIql9HrU2L/MmIuLcdQWvZHep7jOZNz+/bt2LFjBxISEnDHHXdg+/btGD58OB5//HFUq1ZN9Rqd4cxYIyIiwuE1RW25QYMGqFOnjuY13+r69et49NFHsWvXLqxevRo3b960t93q1avD19fXcOepSrWTVatW4ezZs2jfvj38/Pywfv16TJw4ES+99JLmmYooMe5yl5GOBc6MNY4ePYqFCxeiS5cuqFGjBvbu3Yvhw4fj/vvvR/PmzXXP6eXlpWk/q8Scgd5tQql5swsXLuCzzz5DfHw8rl69ioyMDCxduhTffPONJjmU2BaNGzdGt27dkJKSgnnz5iEoKAipqamIiYlBQkKC6hmU2hadO3dG69at8dRTT2HGjBmw2WwYOnQoHnjgAU1+elKpOcwpU6YgOTkZXl5eWLZsGSZNmoQlS5Z41Oc6W6OW59vDhw9Hhw4dMHHiRPTq1Qvff/895s2bh3nz5nmc09Xc7vbxalJiW2ndz2q1f82YMQP16tXDXXfdhatXr+KDDz7Apk2b8PXXX7tUr5HGIoB6c1DOuHz5Ml577TX861//sreJUaNGoWHDhkhKSlJ9/e6qaJ8ray4zIiIC9erV07TWsjhzjqf1uaqRjhXr1q2DiCA6OhpHjhzByJEjERMTgyeffFLz3ACQkZGBJk2aoFatWti+fTtSUlIwfPhwREdHK17PrbScv1Gqn3Ung1Kfdz333HOYNWsWUlJS8MILL+Dw4cOYOHGiKvOBZCA63bmKTC4jI0MAlPiXlpYmIiKZmZmlPg9Ajh07JiIimzZtktjYWKlSpYr4+flJo0aNZPTo0fbbEZYmLS1NWrRooXo+s7HZbDJu3DipXbu2WK1W6dSpk2RnZ9uf37t3ryQkJEj16tXFarVKVFSUDBkyRE6dOqVj1Y4q2udycnLkwQcflODgYPHx8ZE6depI3759df0ZDL3aiZYZ3Hnfi3JrlcFZFbUTvVVUX1nbqvhQ4NNPP5XWrVtL5cqVJTAwUO68806ZOHGiYj+P4Q4lchnNn3/+KT169JCwsDDx9fWV0NBQ6dq1q6K3wddCRe1f7/VrOdbo3bu3hIaGiq+vr4SHh0vv3r3lyJEjiuR0pu8ZMGBAqTkzMzPdzql1jWlpaaU+HxkZaf8bM2fOlLvuuksCAgIkKChIWrVqJXPmzCn39slxcXGSkpJyW+XUmhK5jF6fWvuX3rlupfYYSq/+SOtzvIpy/vjjj9KuXTt7hiZNmsjEiRN1/+mz4twZa+j9k7m3KqqnvP3JiOepSrSTr776Slq2bGkfk7do0ULS09N1/RlpJcZdnjDyseDWscaJEyfk/vvvt++XDRs2lJEjR0peXp5hct5KzX5WiTkDI7QJJebNzp8/L+3bt5fAwEAJCAiQTp06yX//+1/NMig1f5OXlydPPfWUVK1aVapXry49evSQEydOaJZDqTnMnJwc+ec//ymVK1eW2rVry8CBA+XixYuaZFBqWyQkJNjHI+3atZM1a9ZoVqPWc/urVq2Spk2bitVqlZiYGNV+0rGi3J708WpRYltp3c9qtX+99dZb0qBBA/Hz85Pq1atLfHy8bNq0ya2ajTQWUXMOqiIFBQWSmJgotWrVEh8fH4mMjJRBgwbJmTNnNFm/u9yZwwQgy5cv16zGijhzjqf1uaqRjhWLFy+W+vXri6+vr4SEhMjQoUMlNzdXl9wiIqNHj5batWuLj4+PNGrUSKZNmyY2m02Vekqj1fyNkv2sqxmU/Lxr27Zt0q5dO7FarVK/fn2ZMGFCmT+fTuZgEREBERERERERERERERERERERERGRCVX8Y4xERERERERERERERERERERERES3KV4gRUREREREREREREREREREREREpsULpIiIiIiIiIiIiIiIiIiIiIiIyLR4gRQREREREREREREREREREREREZkWL5AiIiIiIiIiIiIiIiIiIiIiIiLT4gVSRERERERERERERERERERERERkWrxAioiIiIiIiIiIiIiIiIiIiIiITIsXSBERERERERERERERERERERERkWnxAikiIiIiIiIiIiIiIiIiIiIiIjItXiBFRERERERERERERERERERERESmxQukiIiIiIiIiIiIiIiIiIiIiIjItP4fYae5hH41yfsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVUAAAMtCAYAAACVIQPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmkklEQVR4nOzdf7DWdZ3//wc/PEdEr4OanCMjKrtuCaWV2sjZ0lmL5WTHphKbpUjdxBydo7vApsCssWY/MMxMM2VNV2iSKZ1Z3eSMEGHilEckGhJRyTYMWjoHZ41zqSu/z/ePz3B9X0fF5SDuUbvdZt4jXK/n+83r5Tl/3ud9Dejp6ekJAAAAAAAAAAAASZKB/b0BAAAAAAAAAACANxNRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQGNzfG3ij7Nq1Kxs3bswhhxySAQMG9Pd2AAAAAAAAAACAftbT05Pnn38+I0aMyMCBe34f1ds2qtq4cWNGjhzZ39sAAAAAAAAAAADeZDZs2JCjjjpqj+tv26jqkEMOSfL//gdUKpV+3g0AAAAAAAAAANDfqtVqRo4cWWuL9uRtG1Xt/sq/SqUiqgIAAAAAAAAAAGp2t0V7sucvBgQAAAAAAAAAAPgzJKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAo9Cmq2rlzZ770pS9l1KhRGTJkSP7yL/8yX/nKV9LT01Ob6enpyaxZs3LkkUdmyJAhGTduXJ5++ulez3nuuecyadKkVCqVDBs2LJMnT84LL7zQa+axxx7LaaedlgMPPDAjR47MnDlzXscxAQAAAAAAAAAA9k6foqpvfOMbueWWW3LTTTflySefzDe+8Y3MmTMn3/nOd2ozc+bMyY033pi5c+dm+fLlGTp0aFpaWrJly5bazKRJk7JmzZosWbIkCxcuzEMPPZSLLrqotl6tVjN+/Pgcc8wxWblyZa699tpcddVVufXWW/fDkQEAAAAAAAAAAPZsQE/5mqn/xVlnnZXGxsbcfvvttc8mTJiQIUOG5Ac/+EF6enoyYsSI/NM//VO++MUvJkm6u7vT2NiYefPmZeLEiXnyySczZsyYrFixIqecckqSZNGiRfnYxz6WP/zhDxkxYkRuueWW/PM//3M6OztTV1eXJJkxY0buvffePPXUU3u112q1moaGhnR3d6dSqez1/xAAAAAAAAAAAODtaW+boj69qeqv//qvs3Tp0vzmN79Jkvz617/Oz3/+85x55plJknXr1qWzszPjxo2r3dPQ0JBTTz01HR0dSZKOjo4MGzasFlQlybhx4zJw4MAsX768NnP66afXgqokaWlpydq1a/OnP/3pVfe2devWVKvVXhcAAAAAAAAAAEBfDe7L8IwZM1KtVnP88cdn0KBB2blzZ772ta9l0qRJSZLOzs4kSWNjY6/7Ghsba2udnZ0ZPnx4700MHpzDDjus18yoUaNe8Yzda4ceeugr9jZ79ux8+ctf7stxAAAAAAAAAAAAXqFPb6q66667cuedd2bBggX51a9+lfnz5+eb3/xm5s+f/0btb6/NnDkz3d3dtWvDhg39vSUAAAAAAAAAAOAtqE9vqrr88sszY8aMTJw4MUlywgkn5Pe//31mz56d888/P01NTUmSrq6uHHnkkbX7urq68r73vS9J0tTUlE2bNvV67o4dO/Lcc8/V7m9qakpXV1evmd1/3z3zcvX19amvr+/LcQAAAAAAAAAAAF6hT2+q+p//+Z8MHNj7lkGDBmXXrl1JklGjRqWpqSlLly6trVer1SxfvjzNzc1Jkubm5mzevDkrV66szTzwwAPZtWtXTj311NrMQw89lO3bt9dmlixZkne9612v+tV/AAAAAAAAAAAA+0ufoqqPf/zj+drXvpb29vY888wzueeee/Ktb30rn/rUp5IkAwYMyJQpU/LVr341P/7xj7N69eqcd955GTFiRD75yU8mSUaPHp2PfvSj+cIXvpBHH300v/jFL3LppZdm4sSJGTFiRJLks5/9bOrq6jJ58uSsWbMmP/rRj3LDDTdk2rRp+/f0AAAAAAAAAAAALzOgp6enZ2+Hn3/++XzpS1/KPffck02bNmXEiBH5zGc+k1mzZqWuri5J0tPTk3/5l3/Jrbfems2bN+dDH/pQbr755rzzne+sPee5557LpZdemvvuuy8DBw7MhAkTcuONN+bggw+uzTz22GNpa2vLihUr8o53vCOXXXZZpk+fvtcHq1araWhoSHd3dyqVyl7fBwAAAAAAAAAAvD3tbVPUp6jqrURUBQAAAAAAAAAAlPa2KerT1/8BAAAAAAAAAAC83YmqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACgM7u8NwLEz2vt7C/vNM9e09vcWAAAAAAAAAAB4nbypCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoNCnqOrYY4/NgAEDXnG1tbUlSbZs2ZK2trYcfvjhOfjggzNhwoR0dXX1esb69evT2tqagw46KMOHD8/ll1+eHTt29Jp58MEHc9JJJ6W+vj7HHXdc5s2b9/pOCQAAAAAAAAAAsJf6FFWtWLEif/zjH2vXkiVLkiSf/vSnkyRTp07Nfffdl7vvvjvLli3Lxo0bc/bZZ9fu37lzZ1pbW7Nt27Y8/PDDmT9/fubNm5dZs2bVZtatW5fW1tacccYZWbVqVaZMmZILL7wwixcv3h/nBQAAAAAAAAAAeE0Denp6evb15ilTpmThwoV5+umnU61Wc8QRR2TBggU555xzkiRPPfVURo8enY6OjowdOzb3339/zjrrrGzcuDGNjY1Jkrlz52b69Ol59tlnU1dXl+nTp6e9vT2PP/547d+ZOHFiNm/enEWLFu1xL1u3bs3WrVtrf69Wqxk5cmS6u7tTqVT29Yj8Hzh2Rnt/b2G/eeaa1v7eAgAAAAAAAAAAe1CtVtPQ0PC/NkV9elNVadu2bfnBD36QCy64IAMGDMjKlSuzffv2jBs3rjZz/PHH5+ijj05HR0eSpKOjIyeccEItqEqSlpaWVKvVrFmzpjZTPmP3zO5n7Mns2bPT0NBQu0aOHLmvRwMAAAAAAAAAAP6M7XNUde+992bz5s35+7//+yRJZ2dn6urqMmzYsF5zjY2N6ezsrM2UQdXu9d1rrzVTrVbz0ksv7XE/M2fOTHd3d+3asGHDvh4NAAAAAAAAAAD4MzZ4X2+8/fbbc+aZZ2bEiBH7cz/7rL6+PvX19f29DQAAAAAAAAAA4C1un95U9fvf/z4//elPc+GFF9Y+a2pqyrZt27J58+Zes11dXWlqaqrNdHV1vWJ999przVQqlQwZMmRftgsAAAAAAAAAALDX9imquuOOOzJ8+PC0trbWPjv55JNzwAEHZOnSpbXP1q5dm/Xr16e5uTlJ0tzcnNWrV2fTpk21mSVLlqRSqWTMmDG1mfIZu2d2PwMAAAAAAAAAAOCN1OeoateuXbnjjjty/vnnZ/Dg///bAxsaGjJ58uRMmzYtP/vZz7Jy5cp8/vOfT3Nzc8aOHZskGT9+fMaMGZNzzz03v/71r7N48eJceeWVaWtrq31138UXX5zf/e53ueKKK/LUU0/l5ptvzl133ZWpU6fupyMDAAAAAAAAAADs2eD/faS3n/70p1m/fn0uuOCCV6xdf/31GThwYCZMmJCtW7empaUlN998c2190KBBWbhwYS655JI0Nzdn6NChOf/883P11VfXZkaNGpX29vZMnTo1N9xwQ4466qjcdtttaWlp2ccjAgAAAAAAAAAA7L0BPT09Pf29iTdCtVpNQ0NDuru7U6lU+ns7vIZjZ7T39xb2m2euaf3fhwAAAAAAAAAA6Bd72xT1+ev/AAAAAAAAAAAA3s5EVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAIXB/b0B4M/bsTPa+3sL+9Uz17T29xYAAAAAAAAAgNfJm6oAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoNDnqOq//uu/8rnPfS6HH354hgwZkhNOOCG//OUva+s9PT2ZNWtWjjzyyAwZMiTjxo3L008/3esZzz33XCZNmpRKpZJhw4Zl8uTJeeGFF3rNPPbYYznttNNy4IEHZuTIkZkzZ84+HhEAAAAAAAAAAGDv9Smq+tOf/pQPfvCDOeCAA3L//ffniSeeyHXXXZdDDz20NjNnzpzceOONmTt3bpYvX56hQ4empaUlW7Zsqc1MmjQpa9asyZIlS7Jw4cI89NBDueiii2rr1Wo148ePzzHHHJOVK1fm2muvzVVXXZVbb711PxwZAAAAAAAAAABgzwb3Zfgb3/hGRo4cmTvuuKP22ahRo2p/7unpybe//e1ceeWV+cQnPpEk+f73v5/Gxsbce++9mThxYp588sksWrQoK1asyCmnnJIk+c53vpOPfexj+eY3v5kRI0bkzjvvzLZt2/Jv//Zvqaury7vf/e6sWrUq3/rWt3rFVwAAAAAAAAAAAPtbn95U9eMf/zinnHJKPv3pT2f48OF5//vfn+9973u19XXr1qWzszPjxo2rfdbQ0JBTTz01HR0dSZKOjo4MGzasFlQlybhx4zJw4MAsX768NnP66aenrq6uNtPS0pK1a9fmT3/606vubevWralWq70uAAAAAAAAAACAvupTVPW73/0ut9xyS/7qr/4qixcvziWXXJJ/+Id/yPz585MknZ2dSZLGxsZe9zU2NtbWOjs7M3z48F7rgwcPzmGHHdZr5tWeUf4bLzd79uw0NDTUrpEjR/blaAAAAAAAAAAAAEn6GFXt2rUrJ510Ur7+9a/n/e9/fy666KJ84QtfyNy5c9+o/e21mTNnpru7u3Zt2LChv7cEAAAAAAAAAAC8BfUpqjryyCMzZsyYXp+NHj0669evT5I0NTUlSbq6unrNdHV11daampqyadOmXus7duzIc88912vm1Z5R/hsvV19fn0ql0usCAAAAAAAAAADoqz5FVR/84Aezdu3aXp/95je/yTHHHJMkGTVqVJqamrJ06dLaerVazfLly9Pc3JwkaW5uzubNm7Ny5crazAMPPJBdu3bl1FNPrc089NBD2b59e21myZIlede73pVDDz20j0cEAAAAAAAAAADYe32KqqZOnZpHHnkkX//61/Pb3/42CxYsyK233pq2trYkyYABAzJlypR89atfzY9//OOsXr065513XkaMGJFPfvKTSf7fm60++tGP5gtf+EIeffTR/OIXv8ill16aiRMnZsSIEUmSz372s6mrq8vkyZOzZs2a/OhHP8oNN9yQadOm7d/TAwAAAAAAAAAAvMzgvgx/4AMfyD333JOZM2fm6quvzqhRo/Ltb387kyZNqs1cccUVefHFF3PRRRdl8+bN+dCHPpRFixblwAMPrM3ceeedufTSS/ORj3wkAwcOzIQJE3LjjTfW1hsaGvKTn/wkbW1tOfnkk/OOd7wjs2bNykUXXbQfjgwAAAAAAAAAALBnA3p6enr6exNvhGq1moaGhnR3d6dSqfT3dngNx85o7+8t7DfPXNPa31t4y3k7/fwTvwMAAAAAAAAA8Ga2t01Rn77+DwAAAAAAAAAA4O1OVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAU+hRVXXXVVRkwYECv6/jjj6+tb9myJW1tbTn88MNz8MEHZ8KECenq6ur1jPXr16e1tTUHHXRQhg8fnssvvzw7duzoNfPggw/mpJNOSn19fY477rjMmzdv308IAAAAAAAAAADQB31+U9W73/3u/PGPf6xdP//5z2trU6dOzX333Ze77747y5Yty8aNG3P22WfX1nfu3JnW1tZs27YtDz/8cObPn5958+Zl1qxZtZl169altbU1Z5xxRlatWpUpU6bkwgsvzOLFi1/nUQEAAAAAAAAAAP53g/t8w+DBaWpqesXn3d3duf3227NgwYJ8+MMfTpLccccdGT16dB555JGMHTs2P/nJT/LEE0/kpz/9aRobG/O+970vX/nKVzJ9+vRcddVVqaury9y5czNq1Khcd911SZLRo0fn5z//ea6//vq0tLS8zuMCAAAAAAAAAAC8tj6/qerpp5/OiBEj8hd/8ReZNGlS1q9fnyRZuXJltm/fnnHjxtVmjz/++Bx99NHp6OhIknR0dOSEE05IY2NjbaalpSXVajVr1qypzZTP2D2z+xl7snXr1lSr1V4XAAAAAAAAAABAX/Upqjr11FMzb968LFq0KLfcckvWrVuX0047Lc8//3w6OztTV1eXYcOG9bqnsbExnZ2dSZLOzs5eQdXu9d1rrzVTrVbz0ksv7XFvs2fPTkNDQ+0aOXJkX44GAAAAAAAAAACQpI9f/3fmmWfW/nziiSfm1FNPzTHHHJO77rorQ4YM2e+b64uZM2dm2rRptb9Xq1VhFQAAAAAAAAAA0Gd9/vq/0rBhw/LOd74zv/3tb9PU1JRt27Zl8+bNvWa6urrS1NSUJGlqakpXV9cr1nevvdZMpVJ5zXCrvr4+lUql1wUAAAAAAAAAANBXryuqeuGFF/Kf//mfOfLII3PyySfngAMOyNKlS2vra9euzfr169Pc3JwkaW5uzurVq7Np06bazJIlS1KpVDJmzJjaTPmM3TO7nwEAAAAAAAAAAPBG6lNU9cUvfjHLli3LM888k4cffjif+tSnMmjQoHzmM59JQ0NDJk+enGnTpuVnP/tZVq5cmc9//vNpbm7O2LFjkyTjx4/PmDFjcu655+bXv/51Fi9enCuvvDJtbW2pr69Pklx88cX53e9+lyuuuCJPPfVUbr755tx1112ZOnXq/j89AAAAAAAAAADAywzuy/Af/vCHfOYzn8l///d/54gjjsiHPvShPPLIIzniiCOSJNdff30GDhyYCRMmZOvWrWlpacnNN99cu3/QoEFZuHBhLrnkkjQ3N2fo0KE5//zzc/XVV9dmRo0alfb29kydOjU33HBDjjrqqNx2221paWnZT0cGAAAAAAAAAADYswE9PT09/b2JN0K1Wk1DQ0O6u7tTqVT6ezu8hmNntPf3FvabZ65p7e8tvOW8nX7+id8BAAAAAAAAAHgz29umqE9f/wcAAAAAAAAAAPB2J6oCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKoioAAAAAAAAAAICCqAoAAAAAAAAAAKAgqgIAAAAAAAAAACiIqgAAAAAAAAAAAAqiKgAAAAAAAAAAgIKoCgAAAAAAAAAAoCCqAgAAAAAAAAAAKIiqAAAAAAAAAAAACq8rqrrmmmsyYMCATJkypfbZli1b0tbWlsMPPzwHH3xwJkyYkK6url73rV+/Pq2trTnooIMyfPjwXH755dmxY0evmQcffDAnnXRS6uvrc9xxx2XevHmvZ6sAAAAAAAAAAAB7ZZ+jqhUrVuRf//Vfc+KJJ/b6fOrUqbnvvvty9913Z9myZdm4cWPOPvvs2vrOnTvT2tqabdu25eGHH878+fMzb968zJo1qzazbt26tLa25owzzsiqVasyZcqUXHjhhVm8ePG+bhcAAAAAAAAAAGCv7FNU9cILL2TSpEn53ve+l0MPPbT2eXd3d26//fZ861vfyoc//OGcfPLJueOOO/Lwww/nkUceSZL85Cc/yRNPPJEf/OAHed/73pczzzwzX/nKV/Ld734327ZtS5LMnTs3o0aNynXXXZfRo0fn0ksvzTnnnJPrr79+PxwZAAAAAAAAAABgz/Ypqmpra0tra2vGjRvX6/OVK1dm+/btvT4//vjjc/TRR6ejoyNJ0tHRkRNOOCGNjY21mZaWllSr1axZs6Y28/Jnt7S01J7xarZu3ZpqtdrrAgAAAAAAAAAA6KvBfb3hhz/8YX71q19lxYoVr1jr7OxMXV1dhg0b1uvzxsbGdHZ21mbKoGr3+u6115qpVqt56aWXMmTIkFf827Nnz86Xv/zlvh4HAAAAAAAAAACglz69qWrDhg35x3/8x9x555058MAD36g97ZOZM2emu7u7dm3YsKG/twQAAAAAAAAAALwF9SmqWrlyZTZt2pSTTjopgwcPzuDBg7Ns2bLceOONGTx4cBobG7Nt27Zs3ry5131dXV1pampKkjQ1NaWrq+sV67vXXmumUqm86luqkqS+vj6VSqXXBQAAAAAAAAAA0Fd9iqo+8pGPZPXq1Vm1alXtOuWUUzJp0qTanw844IAsXbq0ds/atWuzfv36NDc3J0mam5uzevXqbNq0qTazZMmSVCqVjBkzpjZTPmP3zO5nAAAAAAAAAAAAvFEG92X4kEMOyXve855enw0dOjSHH3547fPJkydn2rRpOeyww1KpVHLZZZelubk5Y8eOTZKMHz8+Y8aMybnnnps5c+aks7MzV155Zdra2lJfX58kufjii3PTTTfliiuuyAUXXJAHHnggd911V9rb2/fHmQEAAAAAAAAAAPaoT1HV3rj++uszcODATJgwIVu3bk1LS0tuvvnm2vqgQYOycOHCXHLJJWlubs7QoUNz/vnn5+qrr67NjBo1Ku3t7Zk6dWpuuOGGHHXUUbntttvS0tKyv7cLAAAAAAAAAADQy4Cenp6e/t7EG6FaraahoSHd3d2pVCr9vR1ew7Ez3j5vIHvmmtb+3sJbztvp55/4HQAAAAAAAACAN7O9bYoG/h/uCQAAAAAAAAAA4E1PVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQ6FNUdcstt+TEE09MpVJJpVJJc3Nz7r///tr6li1b0tbWlsMPPzwHH3xwJkyYkK6url7PWL9+fVpbW3PQQQdl+PDhufzyy7Njx45eMw8++GBOOumk1NfX57jjjsu8efP2/YQAAAAAAAAAAAB90Keo6qijjso111yTlStX5pe//GU+/OEP5xOf+ETWrFmTJJk6dWruu+++3H333Vm2bFk2btyYs88+u3b/zp0709ramm3btuXhhx/O/PnzM2/evMyaNas2s27durS2tuaMM87IqlWrMmXKlFx44YVZvHjxfjoyAAAAAAAAAADAng3o6enpeT0POOyww3LttdfmnHPOyRFHHJEFCxbknHPOSZI89dRTGT16dDo6OjJ27Njcf//9Oeuss7Jx48Y0NjYmSebOnZvp06fn2WefTV1dXaZPn5729vY8/vjjtX9j4sSJ2bx5cxYtWrTX+6pWq2loaEh3d3cqlcrrOSJvsGNntPf3FvabZ65p7e8tvOW8nX7+id8BAAAAAAAAAHgz29umqE9vqirt3LkzP/zhD/Piiy+mubk5K1euzPbt2zNu3LjazPHHH5+jjz46HR0dSZKOjo6ccMIJtaAqSVpaWlKtVmtvu+ro6Oj1jN0zu5+xJ1u3bk21Wu11AQAAAAAAAAAA9FWfo6rVq1fn4IMPTn19fS6++OLcc889GTNmTDo7O1NXV5dhw4b1mm9sbExnZ2eSpLOzs1dQtXt999przVSr1bz00kt73Nfs2bPT0NBQu0aOHNnXowEAAAAAAAAAAPQ9qnrXu96VVatWZfny5bnkkkty/vnn54knnngj9tYnM2fOTHd3d+3asGFDf28JAAAAAAAAAAB4Cxrc1xvq6upy3HHHJUlOPvnkrFixIjfccEP+7u/+Ltu2bcvmzZt7va2qq6srTU1NSZKmpqY8+uijvZ7X1dVVW9v9392flTOVSiVDhgzZ477q6+tTX1/f1+MAAAAAAAAAAAD00uc3Vb3crl27snXr1px88sk54IADsnTp0tra2rVrs379+jQ3NydJmpubs3r16mzatKk2s2TJklQqlYwZM6Y2Uz5j98zuZwAAAAAAAAAAALyR+vSmqpkzZ+bMM8/M0Ucfneeffz4LFizIgw8+mMWLF6ehoSGTJ0/OtGnTcthhh6VSqeSyyy5Lc3Nzxo4dmyQZP358xowZk3PPPTdz5sxJZ2dnrrzyyrS1tdXeMnXxxRfnpptuyhVXXJELLrggDzzwQO666660t7fv/9MDAAAAAAAAAAC8TJ+iqk2bNuW8887LH//4xzQ0NOTEE0/M4sWL87d/+7dJkuuvvz4DBw7MhAkTsnXr1rS0tOTmm2+u3T9o0KAsXLgwl1xySZqbmzN06NCcf/75ufrqq2szo0aNSnt7e6ZOnZobbrghRx11VG677ba0tLTspyMDAAAAAAAAAADs2YCenp6e/t7EG6FaraahoSHd3d2pVCr9vR1ew7Ez3j5vIXvmmtb+3sJbztvp55/4HQAAAAAAAACAN7O9bYoG/h/uCQAAAAAAAAAA4E1PVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAU+hRVzZ49Ox/4wAdyyCGHZPjw4fnkJz+ZtWvX9prZsmVL2tracvjhh+fggw/OhAkT0tXV1Wtm/fr1aW1tzUEHHZThw4fn8ssvz44dO3rNPPjggznppJNSX1+f4447LvPmzdu3EwIAAAAAAAAAAPRBn6KqZcuWpa2tLY888kiWLFmS7du3Z/z48XnxxRdrM1OnTs19992Xu+++O8uWLcvGjRtz9tln19Z37tyZ1tbWbNu2LQ8//HDmz5+fefPmZdasWbWZdevWpbW1NWeccUZWrVqVKVOm5MILL8zixYv3w5EBAAAAAAAAAAD2bEBPT0/Pvt787LPPZvjw4Vm2bFlOP/30dHd354gjjsiCBQtyzjnnJEmeeuqpjB49Oh0dHRk7dmzuv//+nHXWWdm4cWMaGxuTJHPnzs306dPz7LPPpq6uLtOnT097e3sef/zx2r81ceLEbN68OYsWLdqrvVWr1TQ0NKS7uzuVSmVfj8j/gWNntPf3FvabZ65p7e8tvOW8nX7+id8BAAAAAAAAAHgz29umqE9vqnq57u7uJMlhhx2WJFm5cmW2b9+ecePG1WaOP/74HH300eno6EiSdHR05IQTTqgFVUnS0tKSarWaNWvW1GbKZ+ye2f2MV7N169ZUq9VeFwAAAAAAAAAAQF/tc1S1a9euTJkyJR/84Afznve8J0nS2dmZurq6DBs2rNdsY2NjOjs7azNlULV7fffaa81Uq9W89NJLr7qf2bNnp6GhoXaNHDlyX48GAAAAAAAAAAD8GdvnqKqtrS2PP/54fvjDH+7P/eyzmTNnpru7u3Zt2LChv7cEAAAAAAAAAAC8BQ3el5suvfTSLFy4MA899FCOOuqo2udNTU3Ztm1bNm/e3OttVV1dXWlqaqrNPProo72e19XVVVvb/d/dn5UzlUolQ4YMedU91dfXp76+fl+OAwAAAAAAAAAAUNOnN1X19PTk0ksvzT333JMHHnggo0aN6rV+8skn54ADDsjSpUtrn61duzbr169Pc3NzkqS5uTmrV6/Opk2bajNLlixJpVLJmDFjajPlM3bP7H4GAAAAAAAAAADAG6VPb6pqa2vLggUL8h//8R855JBD0tnZmSRpaGjIkCFD0tDQkMmTJ2fatGk57LDDUqlUctlll6W5uTljx45NkowfPz5jxozJueeemzlz5qSzszNXXnll2traam+auvjii3PTTTfliiuuyAUXXJAHHnggd911V9rb2/fz8QEAAAAAAAAAAHrr05uqbrnllnR3d+dv/uZvcuSRR9auH/3oR7WZ66+/PmeddVYmTJiQ008/PU1NTfn3f//32vqgQYOycOHCDBo0KM3Nzfnc5z6X8847L1dffXVtZtSoUWlvb8+SJUvy3ve+N9ddd11uu+22tLS07IcjAwAAAAAAAAAA7NmAnp6env7exBuhWq2moaEh3d3dqVQq/b0dXsOxM94+byB75prW/t7CW87b6eef+B0AAAAAAAAAgDezvW2K+vSmKgAAAAAAAAAAgLc7URUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAURFUAAAAAAAAAAAAFURUAAAAAAAAAAEBBVAUAAAAAAAAAAFAQVQEAAAAAAAAAABREVQAAAAAAAAAAAAVRFQAAAAAAAAAAQEFUBQAAAAAAAAAAUBBVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAQVQFAAAAAAAAAABQEFUBAAAAAAAAAAAUBvf3BgAA4M/ZsTPa+3sL+9Uz17T29xYAAAAAAABeN2+qAgAAAAAAAAAAKIiqAAAAAAAAAAAACqIqAAAAAAAAAACAgqgKAAAAAAAAAACgIKoCAAAAAAAAAAAoiKoAAAAAAAAAAAAKg/t7AwAA/Hk7dkZ7f29hv3rmmtb+3gIAAAAAAACvkzdVAQAAAAAAAAAAFERVAAAAAAAAAAAABVEVAAAAAAAAAABAoc9R1UMPPZSPf/zjGTFiRAYMGJB7772313pPT09mzZqVI488MkOGDMm4cePy9NNP95p57rnnMmnSpFQqlQwbNiyTJ0/OCy+80Gvmsccey2mnnZYDDzwwI0eOzJw5c/p+OgAAAAAAAAAAgD7qc1T14osv5r3vfW+++93vvur6nDlzcuONN2bu3LlZvnx5hg4dmpaWlmzZsqU2M2nSpKxZsyZLlizJwoUL89BDD+Wiiy6qrVer1YwfPz7HHHNMVq5cmWuvvTZXXXVVbr311n04IgAAAAAAAAAAwN4b3NcbzjzzzJx55pmvutbT05Nvf/vbufLKK/OJT3wiSfL9738/jY2NuffeezNx4sQ8+eSTWbRoUVasWJFTTjklyf/X3p1GSVVeCwPe3QxNiwFFaUYFHEDiPEQCeAUiAtEb0ZsrJmpEYxxyMUFZmkgcGk0kRnGIUYMkEaNBozfDUqNxCOLVKAtExQEDKNGlgYszECCC2O/34y7rq5ahp+qq6q7nWat/dJ1TVXvvM7yn3tp9OuJnP/tZHHXUUTFt2rTo2bNnzJo1KzZu3Bi33nprtG/fPvbee+9YuHBhXHvttbWarwAAAAAAAAAAAHKtwXeq2pbXX389Vq5cGSNHjsw81rlz5xg0aFDMnTs3IiLmzp0bO+ywQ6ahKiJi5MiRUV5eHvPmzcusc/jhh0f79u0z64wePTqWLFkSH3744Rbfe8OGDbFmzZpaPwAAAAAAAAAAAA2V06aqlStXRkREt27daj3erVu3zLKVK1dGVVVVreVt27aNLl261FpnS6+R/R6f9eMf/zg6d+6c+dlll12anhAAAAAAAAAAAFByctpUVUiTJ0+O1atXZ37eeuutQocEAAAAAAAAAAC0QDltqurevXtERLz99tu1Hn/77bczy7p37x7vvPNOreWbNm2KDz74oNY6W3qN7Pf4rIqKiujUqVOtHwAAAAAAAAAAgIbKaVNVv379onv37jF79uzMY2vWrIl58+bF4MGDIyJi8ODBsWrVqnj22Wcz6zz22GNRU1MTgwYNyqzzxBNPxMcff5xZ59FHH40BAwbEjjvumMuQAQAAAAAAAAAAamlwU9XatWtj4cKFsXDhwoiIeP3112PhwoXx5ptvRllZWZx77rnxox/9KO6777546aWX4pRTTomePXvGscceGxERAwcOjDFjxsQZZ5wR8+fPj6eeeirOOeec+NrXvhY9e/aMiIgTTzwx2rdvH6effnosWrQo7r777vjpT38akyZNylniAAAAAAAAAAAAW9K2oU9YsGBBjBgxIvP7p41O48ePj9tuuy2+973vxbp16+LMM8+MVatWxWGHHRYPPfRQdOjQIfOcWbNmxTnnnBNHHHFElJeXx1e/+tW44YYbMss7d+4cjzzySEyYMCEOPvjg2HnnnePSSy+NM888sym5AgAAAAAAAAAA1KnBTVXDhw+PlNJWl5eVlcXll18el19++VbX6dKlS9x5553bfJ/99tsvnnzyyYaGBwAAAAAAAAAA0CQN/vd/AAAAAAAAAAAArZmmKgAAAAAAAAAAgCyaqgAAAAAAAAAAALJoqgIAAAAAAAAAAMiiqQoAAAAAAAAAACCLpioAAAAAAAAAAIAsmqoAAAAAAAAAAACyaKoCAAAAAAAAAADIoqkKAAAAAAAAAAAgi6YqAAAAAAAAAACALJqqAAAAAAAAAAAAsmiqAgAAAAAAAAAAyKKpCgAAAAAAAAAAIIumKgAAAAAAAAAAgCyaqgAAAAAAAAAAALJoqgIAAAAAAAAAAMiiqQoAAAAAAAAAACCLpioAAAAAAAAAAIAsmqoAAAAAAAAAAACyaKoCAAAAAAAAAADIoqkKAAAAAAAAAAAgi6YqAAAAAAAAAACALJqqAAAAAAAAAAAAsmiqAgAAAAAAAAAAyKKpCgAAAAAAAAAAIIumKgAAAAAAAAAAgCyaqgAAAAAAAAAAALJoqgIAAAAAAAAAAMiiqQoAAAAAAAAAACBL20IHAKWu74UPFDqEnHrjyqMLHQIAAAAAAAAAQJO4UxUAAAAAAAAAAEAWTVUAAAAAAAAAAABZNFUBAAAAAAAAAABk0VQFAAAAAAAAAACQRVMVAAAAAAAAAABAFk1VAAAAAAAAAAAAWTRVAQAAAAAAAAAAZNFUBQAAAAAAAAAAkEVTFQAAAAAAAAAAQBZNVQAAAAAAAAAAAFk0VQEAAAAAAAAAAGTRVAUAAAAAAAAAAJBFUxUAAAAAAAAAAEAWTVUAAAAAAAAAAABZNFUBAAAAAAAAAABk0VQFAAAAAAAAAACQRVMVAAAAAAAAAABAFk1VAAAAAAAAAAAAWTRVAQAAAAAAAAAAZNFUBQAAAAAAAAAAkEVTFQAAAAAAAAAAQBZNVQAAAAAAAAAAAFk0VQEAAAAAAAAAAGTRVAUAAAAAAAAAAJBFUxUAAAAAAAAAAEAWTVUAAAAAAAAAAABZNFUBAAAAAAAAAABkaVvoAABKXd8LHyh0CDnzxpVHFzoEAAAAAAAAAGgyd6oCAAAAAAAAAADIoqkKAAAAAAAAAAAgi6YqAAAAAAAAAACALG0LHQAAQKnre+EDhQ4hZ9648uhChwAAAAAAAABN5k5VAAAAAAAAAAAAWTRVAQAAAAAAAAAAZNFUBQAAAAAAAAAAkEVTFQAAAAAAAAAAQBZNVQAAAAAAAAAAAFnaFjoAACh1fS98oNAh5MwbVx5d6BAAAAAAAAAAmsydqgAAAAAAAAAAALJoqgIAAAAAAAAAAMiiqQoAAAAAAAAAACCLpioAAAAAAAAAAIAsmqoAAAAAAAAAAACyaKoCAAAAAAAAAADIoqkKAAAAAAAAAAAgi6YqAAAAAAAAAACALJqqAAAAAAAAAAAAsrQtdAAAQGnre+EDhQ4hp9648uhChwAAAAAAAAA0kaYqAAAAoKBaU5O1BmsAAAAAaB00VQEAAAAUUGtqKovQWAYAAABA61Be6AAAAAAAAAAAAACKiTtVAQAAFJA71AAAAAAAQPHRVAVAQfkiGQAAAAAAAIBiU9RNVTfddFNcffXVsXLlyth///3jZz/7WRx66KGFDgsAAMih1tRgq7kWoHGMBQAAAAAUm6Jtqrr77rtj0qRJMX369Bg0aFBcf/31MXr06FiyZElUVVUVOjwAAADIidbUTBKhoQQAoDFa0zWh60EAAFqLom2quvbaa+OMM86I0047LSIipk+fHg888EDceuutceGFF262/oYNG2LDhg2Z31evXh0REWvWrMlPwDRazYb1hQ4hZxqzv7Wm/CMaXoNSzz+iddWg1POPUINSzz9CDUo9/whjYanvA6Wef0TjarBP9cPNEElhvHzZ6AY/xz7QumpQ6vlHqIG5KAAaw1hIqWtNnwsjGvfZEADIn0+vWVNK21yvLNW1RgFs3Lgxtttuu/jd734Xxx57bObx8ePHx6pVq+Lee+/d7DlTpkyJyy67LI9RAgAAAAAAAAAALdFbb70VvXv33uryorxT1XvvvReffPJJdOvWrdbj3bp1i8WLF2/xOZMnT45JkyZlfq+pqYkPPvggdtpppygrK2vWeClua9asiV122SXeeuut6NSpU6HDKYhSr0Gp5x+hBqWef4QayL+0849Qg1LPP0INSj3/CDWQf2nnH6EGpZ5/hBqUev4RalDq+UeogfxLO/8INSj1/CPUoNTzj1CDUs8/Qg3kX9r5U1tKKf75z39Gz549t7leUTZVNUZFRUVUVFTUemyHHXYoTDAUpU6dOpX8ybHUa1Dq+UeoQannH6EG8i/t/CPUoNTzj1CDUs8/Qg3kX9r5R6hBqecfoQalnn+EGpR6/hFqIP/Szj9CDUo9/wg1KPX8I9Sg1POPUAP5l3b+/H+dO3euc53yPMTRYDvvvHO0adMm3n777VqPv/3229G9e/cCRQUAAAAAAAAAAJSComyqat++fRx88MExe/bszGM1NTUxe/bsGDx4cAEjAwAAAAAAAAAAWrui/fd/kyZNivHjx8chhxwShx56aFx//fWxbt26OO200wodGi1MRUVFVFdXb/bvIUtJqdeg1POPUINSzz9CDeRf2vlHqEGp5x+hBqWef4QayL+0849Qg1LPP0INSj3/CDUo9fwj1ED+pZ1/hBqUev4RalDq+UeoQannH6EG8i/t/GmcspRSKnQQW3PjjTfG1VdfHStXrowDDjggbrjhhhg0aFChwwIAAAAAAAAAAFqxom6qAgAAAAAAAAAAyLfyQgcAAAAAAAAAAABQTDRVAQAAAAAAAAAAZNFUBQAAAAAAAAAAkEVTFQAAAAAAAAAAQBZNVRSlU089NaZMmRIREX/4wx9i1KhRsdNOO0VZWVksXLiw1roffPBBfOc734kBAwZEZWVl7LrrrvHd7343Vq9enVnn/fffjzFjxkTPnj2joqIidtlllzjnnHNizZo1W3z/p556Ktq2bRsHHHDAVuMqtOxYUkpx6aWXRo8ePaKysjJGjhwZr776aq31jznmmNh1112jQ4cO0aNHj/jGN74RK1asyCx//PHHo2/fvnnMoOkasp9ERJx11lmx++67R2VlZXTt2jXGjh0bixcvzix/4403oqysLE/RN1xDtvkbb7wRp59+evTr1y8qKytj9913j+rq6ti4cWNmnSVLlsSIESOiW7du0aFDh9htt93i4osvjo8//jizzpQpU+LUU0/NV4rblOvtne3999+P3r17R1lZWaxatSrz+G233RbDhw/PfTLNqKHnhrKysnjjjTfyH2gjFGJsyOc+UKxj35QpU6KsrKzWz1577VVrnb59+8bjjz/e1BLUqaH79xVXXBFDhgyJ7bbbLnbYYYfNXq+Y94Fc5PfCCy/E17/+9dhll12isrIyBg4cGD/96U9rrfPXv/41hg4dGjvttFNUVlbGXnvtFdddd91WY7zyyiujrKwszj333FqPt9R9IFtLHQsaWpO+fftudkxfeeWVmeUt8Zrws7JrMmXKlNhrr72iY8eOseOOO8bIkSNj3rx5tdZvSWNhfTT0milfx2+uFOJc2VzngZZ83h8+fPhm55Kzzz47szxXn60KUaNsxTA3UIjrn8cff3yz7VtWVhYrV67cYlzFnG+ujot//vOfce6550afPn2isrIyhgwZEs8880ytdYYPHx633XZbk2vwWYXYByIiNmzYEBdddFH06dMnKioqom/fvnHrrbdmlhdqviDX82Gfvs60adOif//+UVFREb169Yorrrgis7yQ14OF2v433XRTDBw4MCorK2PAgAFx++2311qez+1fqBp8qhjGgrrkukaFnCMt1rmRiIjly5fHySefnBkv9t1331iwYEFmeXONA7mSXdtij/WzivX6IBfngWLNLdvWPhNERMydOze+9KUvRceOHaNTp05x+OGHx7/+9a/M8vp83i7W474+c6LLli2L4447Lrp27RqdOnWKcePGxdtvv11rncbMORRrTQp5TVyXhs6FNNe2KybZNTn11FM325/HjBlTa/1izrcQ349GRKxatSomTJgQPXr0iIqKiujfv388+OCDW4yL1k1TFUVv3bp1cdhhh8VPfvKTLS5fsWJFrFixIqZNmxYvv/xy3HbbbfHQQw/F6aefnlmnvLw8xo4dG/fdd18sXbo0brvttvjLX/5Sa9L3U6tWrYpTTjkljjjiiGbLKdeuuuqquOGGG2L69Okxb9686NixY4wePTo++uijzDojRoyIe+65J5YsWRK///3vY9myZfGf//mfBYw6t+raTyIiDj744Jg5c2b87W9/i4cffjhSSjFq1Kj45JNP8hhpbtS1zRcvXhw1NTVxyy23xKJFi+K6666L6dOnxw9+8IPMa7Rr1y5OOeWUeOSRR2LJkiVx/fXXxy9+8Yuorq4uVFr1luvtffrpp8d+++3XnCEXRH3ODS1VvseGfCu2sW/vvfeO//3f/838/PWvf81Nok1Qn/1748aNcfzxx8e3v/3tLb5GMe8Ducjv2WefjaqqqvjNb34TixYtiosuuigmT54cN954Y2adjh07xjnnnBNPPPFE/O1vf4uLL744Lr744pgxY8Zmr/fMM8/ELbfcUjTny1zUKFtrGAvqe96//PLLax3T3/nOdwoUcfPr379/3HjjjfHSSy/FX//61+jbt2+MGjUq3n333UKHlhf1uWZqyfJ1rsyHlnjeP+OMM2qdS6666qomVmHb8r29i3FuIN/XP0uWLKm1jauqqpotty0ppuPiW9/6Vjz66KNxxx13xEsvvRSjRo2KkSNHxvLly5uvAFuQz31g3LhxMXv27PjVr34VS5YsibvuuisGDBjQrPk1VK7mwyZOnBi//OUvY9q0abF48eK477774tBDD813OnXK1/b/+c9/HpMnT44pU6bEokWL4rLLLosJEybE/fff3+w51iXf58FiHAvqkuvPSYVUTHMjH374YQwdOjTatWsXf/7zn+OVV16Ja665JnbcccfcJUy9FNP1QSnktq3PBHPnzo0xY8bEqFGjYv78+fHMM8/EOeecE+Xljf/quZiO+4htz4muW7cuRo0aFWVlZfHYY4/FU089FRs3boyvfOUrUVNT0+gafFYx1aRYronrUlfN8rXtis2YMWNq7c933XVXoUNqlHx9P7px48Y48sgj44033ojf/e53sWTJkvjFL34RvXr1ynvOFIEERWj8+PGpurq61mOvv/56ioj0/PPP1/n8e+65J7Vv3z59/PHHW13npz/9aerdu/dmj59wwgnp4osvTtXV1Wn//fevM65C+TSWmpqa1L1793T11Vdnlq1atSpVVFSku+66a6vPv/fee1NZWVnauHFjSimlOXPmpD59+jR32DnV1P3khRdeSBGRXnvttVrPLVZN3eZXXXVV6tev3zbf47zzzkuHHXZY5vfq6uo0fvz4JseeC7ne3p+6+eab07Bhw9Ls2bNTRKQPP/wws2zmzJlp2LBhTQ8+jxq6n0REev311wsQacMVYmzI5z5QrGPflh77rD59+qQ5c+bUGWNTNfY8OHPmzNS5c+d6vUcx7APNmd9//dd/pREjRmxzneOOOy6dfPLJtR775z//mfbcc8/06KOPpmHDhqWJEyfWWt7S94GWPBY0tCZ9+vRJ11133VZfryVeE37Wtq7ZV69enSIi/eUvf8k81pLGwvpo6HiSr+M3Vwpxrmyu80BLPu9v6bFsufpsVcgaFcvcQCGuf+bMmbPZeLi1uHKtGI+L9evXpzZt2qQ//elPtdY56KCD0kUXXZT5fdiwYWnmzJn1iqEhCrEP/PnPf06dO3dO77///lafU6j5glzPh73yyiupbdu2afHixVt9TiGvBwux/QcPHpzOP//8WutMmjQpDR06NPN7Prd/IWrwqWIZC+qS6xoVco60WOdGvv/979eaM92S5hoHciW7tsUe62cV4/VBdlxNUay5pVT3Z4JBgwaliy++eJuvW5/P28V63Nc1J/rwww+n8vLytHr16sxjq1atSmVlZenRRx/NPNaYOYdirEmhr4nr0pCaNee2KybZNRk/fnwaO3bsNtcv5nwL8f3oz3/+87TbbrtlPjdsKy5aP3eqolVavXp1dOrUKdq2bbvF5StWrIg//OEPMWzYsFqPz5w5M/7+97+3iDv1fOr111+PlStXxsiRIzOPde7cOQYNGhRz587d4nM++OCDmDVrVgwZMiTatWuXr1CLyrp162LmzJnRr1+/2GWXXQodToM0ZptH/N9x0aVLl60uf+211+Khhx7a7LhoDba2vV955ZW4/PLL4/bbb2/SX9AUo8buJ61ZY8eGlqI5x75XX301evbsGbvttlucdNJJ8eabb+Y09oZqrv27WPaB5jx+6xoLnn/++Xj66ac3q8GECRPi6KOPrhVTIeWyRq1lLGhITa688srYaaed4sADD4yrr746Nm3alO9wC2Ljxo0xY8aM6Ny5c+y///6FDocmKuS5Mtda6nl/1qxZsfPOO8c+++wTkydPjvXr1zcp1m3Jd42KcW6gENc/BxxwQPTo0SOOPPLIeOqppxr9Ho1RTMfFpk2b4pNPPokOHTrUWq+ysjKvd3DN5z5w3333xSGHHBJXXXVV9OrVK/r37x/nn39+rX/nU2i5mg+7//77Y7fddos//elP0a9fv+jbt29861vfig8++CAvedRXPrf/hg0btri/z58/f7N/iZJP+T4PFuNYUBdzQc03N/LpefH444+PqqqqOPDAA+MXv/hFzuNn24rp+iDXijG3bX0meOedd2LevHlRVVUVQ4YMiW7dusWwYcMKcnf7Qs2JbtiwIcrKyqKioiLzWIcOHaK8vLzgd/lvjpoUyzVxLhTztmtOjz/+eFRVVcWAAQPi29/+drz//vuFDqnB8vn96H333ReDBw+OCRMmRLdu3WKfffaJqVOntsj/fkQOFLqrC+qrvl3Y7777btp1113TD37wg82Wfe1rX0uVlZUpItJXvvKV9K9//SuzbOnSpamqqiotWbIkpVS/O3MUg6eeeipFRFqxYkWtx48//vg0bty4Wo9973vfS9ttt12KiPTFL34xvffee/kMNS/q2k9uuumm1LFjxxQRacCAAZvdtaglaMg2/9Srr76aOnXqlGbMmLHZssGDB6eKiooUEenMM89Mn3zySbPE3Ryasr0/+uijtN9++6U77rgjpVS/v8ZuSRqzn7REzT02FFoxjH0PPvhguueee9ILL7yQHnrooTR48OC06667pjVr1jQ5v8Zq6P5d11/vFds+kOv8sl+3bdu26eGHH95sWa9evVL79u1TeXl5uvzyy2stu+uuu9I+++yTqUtddyfJh1zVqDWNBfWtyTXXXJPmzJmTXnjhhfTzn/887bDDDum8887Ld7h5df/996eOHTumsrKy1LNnzzR//vxCh5R3DfmL1paiEOfK5tISz/u33HJLeuihh9KLL76YfvOb36RevXql4447rs6YGiufNSrWuYF8Xv8sXrw4TZ8+PS1YsCA99dRT6bTTTktt27ZNzz77bM7yqUuxHReDBw9Ow4YNS8uXL0+bNm1Kd9xxRyovL0/9+/dvWGJNkM99YPTo0amioiIdffTRad68eemBBx5Iffr0SaeeemrO8mmqXM2HnXXWWamioiINGjQoPfHEE2nOnDnpgAMOqPOOHvmWz+0/efLk1L1797RgwYJUU1OTnnnmmdStW7ctvn8+5bMGxToW1KW5zp2FVgxzIxUVFamioiJNnjw5Pffcc+mWW25JHTp0SLfddluT86P+iu36IJeKLbe6PhPMnTs3RUTq0qVLuvXWW9Nzzz2Xzj333NS+ffu0dOnSemS8bcVw3Nc1J/rOO++kTp06pYkTJ6Z169altWvXpnPOOSfzPUuuFUNNiuGauCG2VrN8b7ticNddd6V77703vfjii+mPf/xjGjhwYPrCF76QNm3aVOjQGiSf348OGDAgVVRUpG9+85tpwYIF6be//W3q0qVLmjJlSm6TokVouX+KDVuwZs2aOProo+Pzn/98TJkyZbPl1113XTz33HNx7733xrJly2LSpEkREfHJJ5/EiSeeGJdddln0798/z1HnzwUXXBDPP/98PPLII9GmTZs45ZRTIqVU6LDy6qSTTornn38+/ud//if69+8f48aNq/U/yVuj5cuXx5gxY+L444+PM844Y7Pld999dzz33HNx5513xgMPPBDTpk0rQJTNY1vbe/LkyTFw4MA4+eSTCxwlza2xY0NL0dxj35e//OU4/vjjY7/99ovRo0fHgw8+GKtWrYp77rmnuVLKu5a+D9THyy+/HGPHjo3q6uoYNWrUZsuffPLJWLBgQUyfPj2uv/76uOuuuyIi4q233oqJEyfGrFmzNvtLtNagFMeCSZMmxfDhw2O//faLs88+O6655pr42c9+Fhs2bCh0aM1mxIgRsXDhwnj66adjzJgxMW7cuHjnnXcKHRZFqK5zZUvS3Of9M888M0aPHh377rtvnHTSSXH77bfHH//4x1i2bFmz5ZRrW6pRqcwNRGz7+mfAgAFx1llnxcEHHxxDhgyJW2+9NYYMGRLXXXddASNuusYeFxERd9xxR6SUolevXlFRURE33HBDfP3rX2/Rd7nc1j5QU1MTZWVlMWvWrDj00EPjqKOOimuvvTZ+/etfF9XdquprW/NhNTU1sWHDhrj99tvj3/7t32L48OHxq1/9KubMmRNLliwpcOTNZ1vb/5JLLokvf/nL8cUvfjHatWsXY8eOjfHjx0dEtOh9/rNKfZ64tWnuuZGampo46KCDYurUqXHggQfGmWeeGWeccUZMnz69uVIiT5pyfVDsmvMzQU1NTUREnHXWWXHaaafFgQceGNddd10MGDAgbr311uZLKkuh50S7du0a//3f/x33339/bL/99tG5c+dYtWpVHHTQQQUbL5u7Jq3lmrgYt11z+9rXvhbHHHNM7LvvvnHsscfGn/70p3jmmWfi8ccfL3Rozaop34/W1NREVVVVzJgxIw4++OA44YQT4qKLLjL2l6rC9nRB/dXVhb1mzZo0ePDgdMQRR9TrDhNPPvlkppv1ww8/TBGR2rRpk/kpKyvLPDZ79uwcZ5M7y5Yt22JdDj/88PTd7353q8976623UkSkp59+upkjzK+G/BX+hg0b0nbbbZfuvPPO5g8shxqyzZcvX5723HPP9I1vfKNed6C64447UmVlZYvpTm/K9t5///1TeXl55pgvLy/PHPOXXnppM0fe/Bp7bmhpmnNsKAbFOvYdcsgh6cILL2xsWk3W0P27IX99Wwz7QK7zW7RoUaqqqtriX6htyQ9/+MPMX5j98Y9/3Gw/iYhUVlaW2rRpU7DxIlc1ak1jQWPP+y+//HKKiLR48eJmjrB47LHHHmnq1KmFDiOvWuOdqgp9rsylQueSi/P+2rVrU0Skhx56qF7v2VD5qlExzw0U+vrn/PPPT1/84hcbEnKTFNNxkW3t2rWZOo0bNy4dddRR9Xq9XMjnPnDKKaek3XffvdY6r7zySoqInNx9IhdyNR926aWXprZt29ZaZ/369Ski0iOPPJLzuBurEOeAjRs3prfeeitt2rQp3Xzzzelzn/tcQe9unq8aFPNYUJfmrFEhFcPcyK677ppOP/30Wq9z8803p549ezY5P+qvWK8PcqGYcqvPZ4K///3vKSIyd/7+1Lhx49KJJ55Yr/fclmI47rdka3Oi7777buau5926dUtXXXVVvfJsiGKqSSGviRuiPnMh+dh2xWrnnXdO06dPL3QYDZLP70cPP/zwdMQRR9Ra58EHH0wRkTZs2NC0RGhxWme7JSVnzZo1MWrUqGjfvn3cd9999bqTwqed9Bs2bIhOnTrFSy+9FAsXLsz8nH322TFgwIBYuHBhDBo0qLlTaLR+/fpF9+7dY/bs2ZnH1qxZE/PmzYvBgwdv9XnZ+ZeqlFKklFpcDeq7zZcvXx7Dhw+Pgw8+OGbOnFmvDvuampr4+OOPM/tHa/LZ7f373/8+Xnjhhcwx/8tf/jIi/u8vdCZMmFDIUHOiseeG1qSpY0OxK9TYt3bt2li2bFn06NEjp/k0RHPu38WwD+Qyv0WLFsWIESNi/PjxccUVV9TrOZ/+tX5ExBFHHLHZfnLIIYfESSedFAsXLow2bdo0KJ5cyVWNWtNY0NiaLFy4MMrLy6OqqiofYRaF7H2clqvQ58pcKnQuuTjvL1y4MCKi2a4P8lWjYp4bKPT1z8KFC/N6/VdMx0W2jh07Ro8ePeLDDz+Mhx9+OMaOHdugWJoin/vA0KFDY8WKFbF27drMOkuXLo3y8vLo3bt3k94rV3I1HzZ06NDYtGlTrTvtLV26NCIi+vTp0xyhN0ohzgHt2rWL3r17R5s2beK3v/1t/Pu//3tB796QrxoU81hQl1KcC8rX3MjQoUM3u3vd0qVLi+o8UQqK9fogF4opt/p8Jujbt2/07NmzIMdFMc6J7rzzzrHDDjvEY489Fu+8804cc8wxTUuygfJdk0JeE+daobddofzjH/+I999/v6Bz/I2Rz+9Hhw4dGq+99lqt70uXLl0aPXr0iPbt2+cwK1qCtoUOAOrywQcfxJtvvhkrVqyIiMhcpHXv3j26d++euVhYv359/OY3v4k1a9bEmjVrIuL/buHYpk2bePDBB+Ptt9+OL3zhC7H99tvHokWL4oILLoihQ4dG3759IyJin332qfW+VVVV0aFDh80eLzZlZWVx7rnnxo9+9KPYc889o1+/fnHJJZdEz54949hjj42IiHnz5sUzzzwThx12WOy4446xbNmyuOSSS2L33XdvNR+o69pP/v73v8fdd98do0aNiq5du8Y//vGPuPLKK6OysjKOOuqoQobeYPXZ5p9eMPTp0yemTZsW7777bub53bt3j4iIWbNmRbt27WLfffeNioqKWLBgQUyePDlOOOGEaNeuXSFSq7dcbO/dd9+91mu+9957ERExcODA2GGHHfKXTDOpz37SkuVrbCiUYhr7zj///PjKV74Sffr0iRUrVkR1dXW0adMmvv71r+ehEltW3/37zTffzNTyk08+yXzhu8cee8T2229ftPtArvJ7+eWX40tf+lKMHj06Jk2aFCtXroyIiDZt2kTXrl0jIuKmm26KXXfdNfbaa6+IiHjiiSdi2rRp8d3vfjciIj73uc9ttp907Ngxdtppp4JeI+WqRq1pLKhPTebOnRvz5s2LESNGxOc+97mYO3dunHfeeXHyySfHjjvuWNgEmsG6deviiiuuiGOOOSZ69OgR7733Xtx0002xfPnyOP744wsdXl7UNZ60ZPk8V7amXHJx3l+2bFnceeedcdRRR8VOO+0UL774Ypx33nlx+OGHx3777deia1ReXl60cwP5vP65/vrro1+/frH33nvHRx99FL/85S/jsccei0ceeaTF5ZuL4yIi4uGHH46UUgwYMCBee+21uOCCC2KvvfaK0047LT8FifzuAyeeeGL88Ic/jNNOOy0uu+yyeO+99+KCCy6Ib37zm1FZWZm3nLclV/NhI0eOjIMOOii++c1vxvXXXx81NTUxYcKEOPLII4vqX7/lc/svXbo05s+fH4MGDYoPP/wwrr322nj55Zfj17/+df4Tz5LPGhTrWFCXXNWoWBTT3Mh5550XQ4YMialTp8a4ceNi/vz5MWPGjJgxY0YeKsGniu36oLXmVp/PBGVlZXHBBRdEdXV17L///nHAAQfEr3/961i8eHH87ne/a3Qdium4r8+c6MyZM2PgwIHRtWvXmDt3bkycODHOO++8GDBgQKNrUMw1KYZr4vqoz1xIPrZdsVi7dm1cdtll8dWvfjW6d+8ey5Yti+9973uxxx57xOjRowsdXoPk8/vRb3/723HjjTfGxIkT4zvf+U68+uqrMXXq1GYbByhyhbxNFtTHzJkzU0Rs9lNdXZ1SSmnOnDlbXB4R6fXXX08ppfTYY4+lwYMHp86dO6cOHTqkPffcM33/+9/P3NJxS6qrq9P+++/f7PnlQk1NTbrkkktSt27dUkVFRTriiCPSkiVLMstffPHFNGLEiNSlS5dUUVGR+vbtm84+++z0j3/8o4BR51Zd+8ny5cvTl7/85VRVVZXatWuXevfunU488cQW+69u6trmW6tH9mn/t7/9bTrooIPS9ttvnzp27Jg+//nPp6lTp9br1rCF1hzb+9NzybbOCy1NXftJS1aosSFfimnsO+GEE1KPHj1S+/btU69evdIJJ5yQXnvtteZJvAHqs3+PHz9+izWaM2dOSqm494Fc5FddXb3F5X369Mm8xg033JD23nvvtN1226VOnTqlAw88MN18883bvCXysGHD0sSJE5sh64bJRY0+q6WPBXXV5Nlnn02DBg3K7PMDBw5MU6dOTR999FEBo24+//rXv9Jxxx2Xevbsmdq3b5969OiRjjnmmDR//vxCh5Y3dY0nLV2+zpWtKZdcnPfffPPNdPjhh2c+X+6xxx7pggsuSKtXr85lSTZTqO1dTHMD+br++clPfpJ233331KFDh9SlS5c0fPjw9Nhjj+Ux0/9TTMfF3XffnXbbbbfUvn371L179zRhwoS0atWqfJShlnxeA//tb39LI0eOTJWVlal3795p0qRJaf369XnKtH5yNR+2fPny9B//8R9p++23T926dUunnnpqev/99/OdTp3ytf1feeWVdMABB6TKysrUqVOnNHbs2KKZPyvU58BiGgvq0hyfkwqlmOZGUkrp/vvvT/vss0+qqKhIe+21V5oxY0buk6ZOxXR9UEq5bW0u6Mc//nHq3bt32m677dLgwYPTk08+2aQaFNNxX5850e9///upW7duqV27dmnPPfdM11xzTaqpqWlSDT6rmGpSLNfEdanPXEg+tl2xWL9+fRo1alTq2rVrateuXerTp08644wz0sqVKwsdWqPk8/vRp59+Og0aNChVVFSk3XbbLV1xxRWZfw9IaSlLKaUAAAAAAAAAAAAgIiIK90/QAQAAAAAAAAAAipCmKgAAAAAAAAAAgCyaqgAAAAAAAAAAALJoqgIAAAAAAAAAAMiiqQoAAAAAAAAAACCLpioAAAAAAAAAAIAsmqoAAAAAAAAAAACyaKoCAAAAAAAAAADIoqkKAAAAAAAAAAAgi6YqAAAAAAAAAACALJqqAAAAAAAAAAAAsvw/ToXJoe9X8VkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -78,14 +102,20 @@ "import json\n", "import matplotlib.pyplot as plt\n", "\n", - "with open('processed_things.json') as f:\n", + "with open('processed_things_2023_11_24.json') as f:\n", " processed_things = json.load(f)\n", " \n", "results_distribution = {}\n", + "results_distribution_things = {}\n", " \n", "for thing_name, thing in processed_things.items():\n", + " if thing[\"TotalCyclesCount\"] == 0 or thing[\"TotalCyclesCount\"] == thing['TotalRemovedCycleCount']:\n", + " continue\n", + " thing_colors = set()\n", " for day_idx in range(7):\n", " for hour_idx in range(24):\n", + " for result in thing['Results'][day_idx][hour_idx]:\n", + " thing_colors.add(result)\n", " results = thing['Results'][day_idx][hour_idx]\n", " sorted_results = sorted(results)\n", " results_string = ''.join(str(e) for e in sorted_results)\n", @@ -94,14 +124,69 @@ " results_distribution[string] = 1\n", " else:\n", " results_distribution[string] += 1\n", + " thing_colors_list = list(thing_colors)\n", + " thing_colors_list.sort()\n", + " thing_colors_string = ''.join(str(e) for e in thing_colors_list)\n", + " string = \"'\" + thing_colors_string + \"'\"\n", + " if string == \"''\":\n", + " print(thing)\n", + " if string not in results_distribution_things:\n", + " results_distribution_things[string] = 1\n", + " else:\n", + " results_distribution_things[string] += 1\n", + " \n", + "print(\"Results distribution\")\n", + "print(results_distribution_things)\n", + "print(\"Total\")\n", + "print(sum(results_distribution_things.values()))\n", + "print(\"1234 - relative\")\n", + "print(results_distribution_things[\"'1234'\"]/sum(results_distribution_things.values()))\n", + "print(\"13 - relative\")\n", + "print(results_distribution_things[\"'13'\"]/sum(results_distribution_things.values()))\n", "\n", "fig, ax = plt.subplots(figsize=(30, 10))\n", "ax.bar(range(len(results_distribution)), list(results_distribution.values()), align='center')\n", "ax.set_xticks(range(len(results_distribution)))\n", "ax.set_xticklabels(list(results_distribution.keys()))\n", "plt.show()\n", + "\n", + "fig, ax = plt.subplots(figsize=(30, 10))\n", + "ax.bar(range(len(results_distribution_things)), list(results_distribution_things.values()), align='center')\n", + "ax.set_xticks(range(len(results_distribution_things)))\n", + "ax.set_xticklabels(list(results_distribution_things.keys()))\n", + "plt.show()\n", " " ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1835\n" + ] + } + ], + "source": [ + "import json\n", + "\n", + "with open('processed_things_2023_11_24.json') as f:\n", + " processed_things = json.load(f)\n", + " \n", + "things_with_no_cycles = 0\n", + "\n", + "for thing_name, thing in processed_things.items():\n", + " if \"_primary\" in thing_name:\n", + " if thing['TotalCyclesCount'] == 0:\n", + " things_with_no_cycles += 1\n", + " \n", + "print(things_with_no_cycles)\n", + " \n" + ] } ], "metadata": { @@ -120,7 +205,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/studies/db/go_rewrite/things/things.go b/studies/db/go_rewrite/things/things.go index eb128873..a15ea885 100644 --- a/studies/db/go_rewrite/things/things.go +++ b/studies/db/go_rewrite/things/things.go @@ -111,3 +111,16 @@ func (thingsProvider *ThingsProvider) FilterOnlySecondarySignalAndCycleSecondDat thingsProvider.Things[i].Datastreams = datastreams } } + +func (thingsProvider *ThingsProvider) FilterOnlyPrimarySignalSecondarySignalAndCycleSecondDatastreams() { + for i, thing := range thingsProvider.Things { + datastreams := []Datastream{} + for _, datastream := range thing.Datastreams { + layerName := &datastream.Properties.LayerName + if *layerName == "primary_signal" || *layerName == "secondary_signal" || *layerName == "cycle_second" { + datastreams = append(datastreams, datastream) + } + } + thingsProvider.Things[i].Datastreams = datastreams + } +}