-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
181 lines (154 loc) · 6.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
## Not in use ##
import io
import streamlit as st
import numpy as np
from src.utils import utils
import PIL.Image as Image
from src.reconstruct_image_from_representation import reconstruct_image_from_representation
from src.neural_style_transfer import neural_style_transfer
st.set_page_config(
page_title="Neural Style Transfer Video Generation of image reconstruction",
page_icon="\u2712",
layout="wide",
initial_sidebar_state="expanded",
)
st.header("Neural Style Transfer Video Generation")
# Sidebar
st.sidebar.header("Neural Style Transfer Video Generation")
with st.sidebar.expander('About the app'):
st.write("""
Use this application to play with the Neural Style Transfer
by generating video of optimizer
""")
# Reconstruct or Transfer
with st.sidebar.container():
st.sidebar.subheader("Reconstruct or Transfer batao")
Type = st.sidebar.selectbox("Do you want to reconstruct or transfer",
["Reconstruct", "Transfer"])
utils.yamlSet('type', Type)
# Optimizer
with st.sidebar.container():
st.sidebar.subheader("Optimizer")
optimizer = st.sidebar.selectbox("Choose Optimizer", ["Adam", "LBFGS"])
utils.yamlSet('optimizer', optimizer)
iterations = st.sidebar.slider("Iterations", 10, 3000)
utils.yamlSet('iterations', iterations)
if optimizer == "Adam":
learning_rate = st.sidebar.slider("Learning Rate (100\u03BB)", 0.01,
90.0)
utils.yamlSet('learning_rate', learning_rate)
st.sidebar.write("\u03BB = ", learning_rate / 100.0)
# Reconstruction
if Type == "Reconstruct":
with st.sidebar.container():
st.sidebar.subheader("Reconstruction")
reconstruct = st.sidebar.selectbox("Reconstruct which image",
('Content', 'Style'))
utils.yamlSet('reconstruct', reconstruct)
# Visualization
with st.sidebar.container():
st.sidebar.subheader("Visualization")
visualize = st.sidebar.selectbox(
"Do you want to visualize feature maps of reconstruct images",
("Yes", "No"))
utils.yamlSet('visualize', visualize)
# Model
with st.sidebar.container():
st.sidebar.subheader("Model")
model = st.sidebar.selectbox("Choose Model",
("VGG16", "VGG16-Experimental"))
utils.yamlSet('model', model)
# # use layer
# if model == "VGG19":
# with st.sidebar.container():
# st.sidebar.subheader("Layer Type")
# use = st.sidebar.selectbox("Which type of layer you want to use",
# ("convolution", "relu"))
# Init Image
if Type == "Transfer":
with st.sidebar.container():
st.sidebar.subheader("Init Image")
initImage = st.sidebar.selectbox(
"Init Image",
('Gaussian Noise Image', 'White Noise Image', 'Content', 'Style'))
utils.yamlSet('initImage', initImage)
# Content Layer
with st.sidebar.container():
st.sidebar.subheader("Content Layer")
if model == "VGG16-Experimental":
contentLayer = st.sidebar.selectbox(
"Content Layer", ('relu1_1', 'relu2_1', 'relu2_2', 'relu3_1',
'relu3_2', 'relu4_1', 'relu4_3', 'relu5_1'))
elif model == "VGG16":
contentLayer = st.sidebar.selectbox(
"Content Layer", ('relu1_2', 'relu2_2', 'relu3_3', 'relu4_3'))
utils.yamlSet('contentLayer', contentLayer)
# elif model == "VGG19" and use == "relu":
# st.sidebar.selectbox("Content Layer",
# ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'))
# elif model == "VGG19" and use == "convolution":
# st.sidebar.selectbox("Content Layer",
# ('conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv4_2',
# 'conv5_1'))
# Height
with st.sidebar.container():
st.sidebar.subheader("Height")
height = st.sidebar.slider("Height", 100, 6000, 400)
utils.yamlSet('height', height)
# Representation saving frequency
with st.sidebar.container():
st.sidebar.subheader("Representation Saving Frequency")
reprSavFreq = st.sidebar.slider(
"After how many iterations you want to save representation for "
"video generation", 1, 100)
utils.yamlSet('reprSavFreq', reprSavFreq)
if Type == "Transfer":
# Content Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
contentWeight = st.slider("Content Weight (1000\u03B1)", 0.01, 1000.0)
utils.yamlSet('contentWeight', contentWeight)
with col2:
st.write("\u03B1 = ", contentWeight / 1000.0)
# Style Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
styleWeight = st.slider("Style Weight (1000\u03B2)", 0.01, 1000.0)
utils.yamlSet('styleWeight', styleWeight)
with col2:
st.write("\u03B2 = ", styleWeight / 1000.0)
# Total Variation Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
totalVariationWeight = st.slider("Total Variation Weight (1000\u03B3)",
0.01, 1000.0)
utils.yamlSet('totalVariationWeight', totalVariationWeight)
with col2:
st.write("\u03B3 = ", totalVariationWeight / 1000.0)
# File upload
col1, col2 = st.columns([0.5, 0.5])
with col1:
contentImage = st.file_uploader('Choose Content Image', type=['jpg'])
if contentImage:
st.image(contentImage)
contentNumpy = np.asarray(
Image.open(io.BytesIO(contentImage.getvalue())))
contentPath = utils.save_numpy_array_as_jpg(contentNumpy, "content")
utils.yamlSet('contentPath', contentPath)
with col2:
styleImage = st.file_uploader('Choose Style Image', type=['jpg'])
if styleImage:
st.image(styleImage)
styleNumpy = np.asarray(Image.open(io.BytesIO(styleImage.getvalue())))
stylePath = utils.save_numpy_array_as_jpg(styleNumpy, "style")
utils.yamlSet("stylePath", stylePath)
submit = st.button("Submit")
if submit:
utils.clearDir()
if Type == "Reconstruct":
reconstruct_image_from_representation()
elif Type == "Transfer":
neural_style_transfer()
video_file = open("src/data/transfer/out.mp4", "rb")
video_bytes = video_file.read()
st.video(video_bytes)