Skip to content
This repository has been archived by the owner on Jan 9, 2025. It is now read-only.

Latest commit

 

History

History
211 lines (173 loc) · 6.01 KB

README.md

File metadata and controls

211 lines (173 loc) · 6.01 KB

分类 和 回归

  • 本质:对事物做预测
  • 不同: 输出的结果类型
    • 分类
      • 离散值
    • 回归
      • 连续值

1. 使用 AdaBoost 工具

from sklearn.ensemble import AdaBoostClassifier

放假预测

我们看下 sklearn 中自带的波士顿房价数据集。

13项指标

运算过程

  1. 加载数据

  2. 分隔数据为训练集和测试集

  3. 创建 AdaBoost 回归模型

  4. 传入训练集数据进行拟合

  5. 传入测试数据集进行预测

代码

示例代码

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_boston
from sklearn.ensemble import AdaBoostRegressor
# 加载数据
data=load_boston()
# 分割数据
train_x, test_x, train_y, test_y = train_test_split(data.data, data.target, test_size=0.25, random_state=33)
# 使用 AdaBoost 回归模型
regressor=AdaBoostRegressor()
regressor.fit(train_x,train_y)
pred_y = regressor.predict(test_x)
mse = mean_squared_error(test_y, pred_y)
print(" 房价预测结果 ", pred_y)
print('*'*30)
print(" 均方误差 = ",round(mse,2))

使用决策树和回归树

示例代码

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_boston
from sklearn.ensemble import AdaBoostRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
# 加载数据
data=load_boston()
# 分割数据
train_x, test_x, train_y, test_y = train_test_split(data.data, data.target, test_size=0.25, random_state=33)
# 使用 AdaBoost 回归模型
regressor=AdaBoostRegressor()
regressor.fit(train_x,train_y)
pred_y = regressor.predict(test_x)
mse = mean_squared_error(test_y, pred_y)
# 使用决策树回归模型
dec_regressor=DecisionTreeRegressor()
dec_regressor.fit(train_x,train_y)
pred_y = dec_regressor.predict(test_x)
mse = mean_squared_error(test_y, pred_y)
print(" 决策树均方误差 = ",round(mse,2))
'''
 决策树均方误差 =  28.19
'''
# 使用 KNN 回归模型
knn_regressor=KNeighborsRegressor()
knn_regressor.fit(train_x,train_y)
pred_y = knn_regressor.predict(test_x)
mse = mean_squared_error(test_y, pred_y)
print("KNN 均方误差 = ",round(mse,2))
'''
KNN 均方误差 =  27.87

'''

AdaBoost 与决策树模型的比较

官方代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.metrics import zero_one_loss
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier

# 设置 AdaBoost 迭代次数
n_estimators = 200
# 使用
X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
# 从 12000 个数据中取前 2000 行作为测试集,其余作为训练集
test_x, test_y = X[2000:], y[2000:]
train_x, train_y = X[:2000], y[:2000]
# 弱分类器
dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(train_x, train_y)
dt_stump_err = 1.0 - dt_stump.score(test_x, test_y)
# 决策树分类器
dt = DecisionTreeClassifier()
dt.fit(train_x, train_y)
dt_err = 1.0 - dt.score(test_x, test_y)
# AdaBoost 分类器
ada = AdaBoostClassifier(base_estimator=dt_stump, n_estimators=n_estimators)
ada.fit(train_x, train_y)
# 三个分类器的错误率可视化
fig = plt.figure()
# 设置 plt 正确显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
ax = fig.add_subplot(111)
ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label=u'决策树弱分类器 错误率')
ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label=u'决策树模型 错误率')
ada_err = np.zeros((n_estimators,))
# 遍历每次迭代的结果 i 为迭代次数, pred_y 为预测结果
for i, pred_y in enumerate(ada.staged_predict(test_x)):
  # 统计错误率
  ada_err[i] = zero_one_loss(pred_y, test_y)
# 绘制每次迭代的 AdaBoost 错误率
ax.plot(np.arange(n_estimators) + 1, ada_err, label='AdaBoost Test 错误率', color='orange')
ax.set_xlabel('迭代次数')
ax.set_ylabel('错误率')
leg = ax.legend(loc='upper right', fancybox=True)
plt.show()

pipenv 代码

import numpy as np
import matplotlib

matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.metrics import zero_one_loss
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier

# 设置 AdaBoost 迭代次数
n_estimators = 200
# 使用
X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
# 从 12000 个数据中取前 2000 行作为测试集,其余作为训练集
test_x, test_y = X[2000:], y[2000:]
train_x, train_y = X[:2000], y[:2000]
# 弱分类器
dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(train_x, train_y)
dt_stump_err = 1.0 - dt_stump.score(test_x, test_y)
# 决策树分类器
dt = DecisionTreeClassifier()
dt.fit(train_x, train_y)
dt_err = 1.0 - dt.score(test_x, test_y)
# AdaBoost 分类器
ada = AdaBoostClassifier(base_estimator=dt_stump, n_estimators=n_estimators)
ada.fit(train_x, train_y)
# 三个分类器的错误率可视化
fig = plt.figure()
# 设置 plt 正确显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
ax = fig.add_subplot(111)
ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label=u'决策树弱分类器 错误率')
ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label=u'决策树模型 错误率')
ada_err = np.zeros((n_estimators,))
# 遍历每次迭代的结果 i 为迭代次数, pred_y 为预测结果
for i, pred_y in enumerate(ada.staged_predict(test_x)):
  # 统计错误率
  ada_err[i] = zero_one_loss(pred_y, test_y)
# 绘制每次迭代的 AdaBoost 错误率
ax.plot(np.arange(n_estimators) + 1, ada_err, label='AdaBoost Test 错误率', color='orange')
ax.set_xlabel('迭代次数')
ax.set_ylabel('错误率')
leg = ax.legend(loc='upper right', fancybox=True)
plt.show()

总结