-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfish_dip.py
579 lines (451 loc) · 20.8 KB
/
fish_dip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# part of this code is modified from TANL - https://arxiv.org/abs/2101.05779
import argparse
import configparser
import itertools
import json
import logging
import os
from collections import defaultdict
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, SequentialSampler
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer, T5Tokenizer
import re
from augment.arguments import ModelArguments, DataTrainingArguments, TrainingArguments
from augment.datasets_all import load_dataset
from augment.evaluate import evaluate, get_avg_results, print_results
from augment.utils import get_episode_indices
import numpy as np
from transformers import Adafactor
early_stop_count = 0
early_stop_loss_threshold = 1e-6
early_stop_patience = 20
chosen_params = []
# args
subsequent_param_percentage = 0.01
initial_param_percentage = 0.01
reevaluate_after_steps = 100
def calculate_gradients(model, data_loader, cuda_device, grad_type):
losses = []
gradients_dict = {}
max_samples = 25
min_samples = 3
if grad_type == "absolute":
grad_method = torch.abs
elif grad_type == "square":
grad_method = torch.square
# for calculating gradient, use a fraction of the available samples
sample_percentage_used = 0.1
num_samples = min(max(int(sample_percentage_used * len(data_loader)), min_samples), max_samples)
tmp_dl = DataLoader(data_loader.dataset, batch_size=data_loader.batch_size * 2, collate_fn=data_loader.collate_fn,
pin_memory=data_loader.pin_memory)
with torch.no_grad():
for idx, inputs in enumerate(tmp_dl):
inputs.pop("idx", None)
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(cuda_device)
return_dicts = model(**inputs)
lm_logits = return_dicts['logits']
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
_loss = (loss_fct(lm_logits.view(-1, lm_logits.size(-1)), inputs['labels'].view(-1))).view(lm_logits.size(0), -1)
loss = torch.mean(_loss, axis=1)
loss = loss.detach().cpu().numpy()
losses = np.append(losses, loss, axis=0)
idxes = np.argpartition(losses, -min(num_samples, len(losses) - 1))[-min(num_samples, len(losses) - 1):] # largest num sample indices
# do it sample by sample.
# TODO much faster implementation -> batchify the samples
subset = torch.utils.data.Subset(data_loader.dataset, idxes)
tmp_dl = DataLoader(subset, batch_size=1, collate_fn=data_loader.collate_fn,
pin_memory=data_loader.pin_memory)
for name, param in model.named_parameters():
gradients_dict[name] = torch.zeros_like(param).to(cuda_device)
for idx, inputs in enumerate(tmp_dl):
inputs.pop("idx", None)
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(cuda_device)
return_dicts = model(**inputs)
loss = return_dicts["loss"]
loss.backward()
for name, param in model.named_parameters():
gradients_dict[name] += grad_method(param.grad).data
model.zero_grad()
return gradients_dict
def create_mask_gradient(model, helperTrainer, keep_ratio, sample_type, grad_type, include_match_str = ""):
global chosen_params
original_device = list(model.parameters())[0].device
cuda_device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(cuda_device)
data_loader = helperTrainer.get_train_dataloader()
data_loader_seq = DataLoader(
dataset=data_loader.dataset,
batch_size=data_loader.batch_size,
sampler=SequentialSampler(data_loader.dataset),
num_workers=data_loader.num_workers,
collate_fn=data_loader.collate_fn,
pin_memory=data_loader.pin_memory,
drop_last=data_loader.drop_last,
)
if sample_type == "label":
importance_method = calculate_gradients
else:
raise NotImplementedError
gradients = importance_method(model, data_loader_seq, cuda_device, grad_type)
# add sizes and aggregate tensors
sizes = {}
tensors = []
classifier_size = 0
extra_inclusion_size = 0
all_params_size = 0
classifier_mask_dict = {}
inclusion_mask_dict = {}
for k, v in gradients.items():
# don't count classifier layer, they should be all trainable
if "classifier" in k:
classifier_size += torch.prod(torch.tensor(v.shape)).item()
classifier_mask_dict[k] = torch.ones_like(v).to(original_device)
elif re.fullmatch(include_match_str, k):
extra_inclusion_size += torch.prod(torch.tensor(v.shape)).item()
inclusion_mask_dict[k] = torch.ones_like(v).to(original_device)
else:
sizes[k] = v.shape
tensors.append(v.view(-1))
all_params_size += torch.prod(torch.tensor(v.shape)).item()
tensors = torch.cat(tensors, 0)
keep_num = int(all_params_size * keep_ratio) - classifier_size - extra_inclusion_size * 0
assert keep_num > 0
top_pos = torch.topk(tensors, keep_num)[1]
masks = torch.zeros_like(tensors, device=cuda_device)
masks[top_pos] = 1
assert masks.long().sum() == len(top_pos)
mask_dict = {}
now_idx = 0
for k, v in sizes.items():
end_idx = now_idx + torch.prod(torch.tensor(v))
mask_dict[k] = masks[now_idx: end_idx].reshape(v).to(original_device)
now_idx = end_idx
assert now_idx == len(masks)
# Add the classifier's mask to mask_dict
mask_dict.update(classifier_mask_dict)
mask_dict.update(inclusion_mask_dict)
model.to(original_device)
return mask_dict
total_steps = 0
total_steps_debug = 2000
class SparseUpdateTrainer(Trainer):
def __init__(self, *args, mask, tempTrainer, params_to_keep, **kwargs):
super().__init__(*args, **kwargs)
self.mask = mask
self.tempTrainer = tempTrainer
self.params_to_keep = params_to_keep
def training_step(self, *args, **kwargs):
global total_steps, early_stop_loss_threshold, early_stop_count, early_stop_patience
total_steps += 1
if total_steps % total_steps_debug == 0:
print("Steps done: " + str(total_steps_debug))
if total_steps % reevaluate_after_steps == 0:
self.mask = create_mask_gradient(
self.model,
self.tempTrainer,
subsequent_param_percentage,
'label',
'square',
self.params_to_keep
)
loss = super().training_step(*args, **kwargs)
# Early stopping is optional Might be useful.
if loss < early_stop_loss_threshold:
early_stop_count += 1
if early_stop_count >= early_stop_patience:
self.control.should_training_stop = True
logging.info("-------Training early stopped due to hitting early stop patience limit---------")
else:
early_stop_count = 0
# mask out the gradients
for name, params in self.model.named_parameters():
device = params.device
self.mask[name] = self.mask[name].to(device)
params.grad.data.copy_(params.grad.data * self.mask[name].data)
return loss
def main():
assert torch.cuda.is_available(), 'CUDA not available'
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('job')
parser.add_argument('--algorithm', type=str, help='choose either label or expect', default='label')
parser.add_argument('--percentage', type=float, help='percentage of parameters to keep trainable in each X step', default=0.01)
parser.add_argument('--subsequent_param_percentage', type=float, help='percentage of parameters to keep trainable in each X step', default=0.01)
parser.add_argument('--method', type=str, help='absolute or square', default='square')
parser.add_argument('-c', '--config_file', type=str, default='config.ini', help='configuration file')
parser.add_argument('-e', '--eval', action='store_true', default=False, help='run evaluation only')
parser.add_argument('--evaluate_checkpoints', action='store_true', default=False,
help='evaluate intermediate checkpoints instead of the final model')
parser.add_argument('--evaluate_last_checkpoint', action='store_true', default=False,
help='evaluate the last intermediate checkpoint instead of the final model')
parser.add_argument('--evaluate_checkpoint_in_dir', type=str, default=None,
help='evaluate the checkpoint in the given directory')
parser.add_argument('-g', '--gpu', type=int, default=0, help='which GPU to use for evaluation')
parser.add_argument('-v', '--verbose_results', action='store_true', default=False,
help='print results for each evaluation run')
parser.add_argument('--reevaluate_after_steps', type=int, default=100, help='How many steps after you want to evaluate')
args, remaining_args = parser.parse_known_args()
global reevaluate_after_steps
reevaluate_after_steps = args.reevaluate_after_steps
# read config file
config = configparser.ConfigParser(allow_no_value=False)
config.read(args.config_file)
job = args.job
assert job in config
train_subset, num_train_epochs, model_name_or_path = None, None, None
for k in range(len(remaining_args)):
if remaining_args[k] == '--train_subset':
train_subset = (remaining_args[k + 1])
if remaining_args[k] == '--num_train_epochs':
num_train_epochs = (remaining_args[k + 1])
if remaining_args[k] == '--model_name_or_path':
model_name_or_path = remaining_args[k+1]
global subsequent_param_percentage
subsequent_param_percentage = args.subsequent_param_percentage
name = model_name_or_path + '_' + args.job + '_percentage-' + str(args.percentage) + '_refresh-perc-' + str(subsequent_param_percentage) + '_subset-' + str(train_subset) + '_epochs-' + str(num_train_epochs) + 'reeval_steps-' + str(reevaluate_after_steps)
# set defaults for other arguments
defaults = {
'overwrite_output_dir': True,
'overwrite_cache': True,
'per_device_eval_batch_size': 12,
'logging_steps': 5, # do not log by default
'save_steps': 0, # do not save checkpoints by default
}
# the config file gives default values for the command line arguments
defaults.update(dict(config.items(job)))
for key in defaults:
if defaults[key] in ['True', 'False']:
# interpret True/False as boolean
defaults[key] = config.getboolean(job, key)
if defaults[key] == 'None':
# interpret as None
defaults[key] = None
if args.eval:
# run evaluation only
defaults['do_train'] = False
# parse remaining arguments and divide them into three categories
second_parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
second_parser.set_defaults(**defaults)
model_args, data_args, training_args = second_parser.parse_args_into_dataclasses(remaining_args)
try:
os.mkdir(training_args.output_dir)
except FileExistsError:
pass
# process arguments related to max length
if data_args.max_output_seq_length_eval is None:
# defaults first to max_output_seq_length, then max_seq_length_eval, then max_seq_length
data_args.max_output_seq_length_eval = data_args.max_output_seq_length \
or data_args.max_seq_length_eval \
or data_args.max_seq_length
if data_args.max_output_seq_length is None:
# defaults to max_seq_length
data_args.max_output_seq_length = data_args.max_seq_length
if data_args.max_seq_length_eval is None:
# defaults to max_seq_length
data_args.max_seq_length_eval = data_args.max_seq_length
if data_args.chunk_size_eval is None:
# defaults to chunk_size
data_args.chunk_size_eval = data_args.chunk_size
if data_args.chunk_overlap_eval is None:
# defaults to chunk overlap
data_args.chunk_overlap_eval = data_args.chunk_overlap
# construct name for the output directory
output_dir = os.path.join(
training_args.output_dir,
f'{args.job}',
f'-{name}',
f'-{model_args.model_name_or_path.split("/")[-1]}'
f'-ep{round(training_args.num_train_epochs)}'
f'-len{data_args.max_seq_length}'
)
if data_args.max_output_seq_length != data_args.max_seq_length:
output_dir += f'-{data_args.max_output_seq_length}'
output_dir += f'-b{training_args.per_device_train_batch_size}' \
f'-{data_args.train_split}'
if data_args.chunk_size != 128:
output_dir += f'-chunk{data_args.chunk_size}'
if data_args.chunk_overlap != 64:
output_dir += f'-overlap{data_args.chunk_overlap}'
if data_args.output_format is not None:
output_dir += f'-{data_args.output_format}'
if data_args.input_format is not None:
output_dir += f'-{data_args.input_format}'
if data_args.train_subset < 1:
output_dir += f'-size{data_args.train_subset:.2f}'
try:
os.makedirs(output_dir)
except FileExistsError:
pass
# setup logging
logging.basicConfig(
filename=os.path.join(output_dir, 'logs.log'),
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
)
logging.getLogger().addHandler(logging.StreamHandler())
# construct file name for the evaluation results
evaluation_output_filename = f'results'
if data_args.num_beams is not None:
evaluation_output_filename += f'-{data_args.num_beams}beams'
if data_args.max_seq_length_eval is not None:
evaluation_output_filename += f'-len{data_args.max_seq_length_eval}'
# create model config
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
# create tokenizer
model_args.tokenizer_name = 't5-large'
tokenizer = T5Tokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,force_download=True
)
# get list of dataset names
dataset_names = data_args.datasets.split(',')
# construct list of episode indices
episode_indices = get_episode_indices(data_args.episodes)
# episode loop
# (note that the episode index is used as the random seed, so that each episode is reproducible)
evaluation_results = defaultdict(list)
for ep_idx in episode_indices:
print()
logging.info(f'Episode {ep_idx} ({len(episode_indices)} episodes total)')
episode_output_dir = os.path.join(output_dir, f'episode{ep_idx}')
try:
os.mkdir(episode_output_dir)
except FileExistsError:
pass
logging.info(f'Output directory: {episode_output_dir}')
training_args.output_dir = episode_output_dir # checkpoints are saved in episode-specific directory
# load pretrained model
model = None
str_to_include_params = ""
if training_args.zero_shot or training_args.do_train:
logging.info(f"Using model {model_args.model_name_or_path}")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
)
# fine-tune the model
if training_args.do_train:
# load train dataset
datasets = []
for dataset_name in dataset_names:
logging.info(f'Process dataset {dataset_name} (train)')
dataset = load_dataset(
dataset_name, data_args, split=data_args.train_split,
max_input_length=data_args.max_seq_length, max_output_length=data_args.max_output_seq_length,
tokenizer=tokenizer, seed=ep_idx, train_subset=data_args.train_subset,
)
datasets.append(dataset)
train_dataset = torch.utils.data.ConcatDataset(datasets) if training_args.do_train else None
optimizer = Adafactor(
model.parameters(),
lr=1e-2,
weight_decay=0,
scale_parameter=True,
relative_step=False,
warmup_init=False,
)
tempTrainer = Trainer(model=model,
args=training_args,
train_dataset=train_dataset)
mask = create_mask_gradient(
model,
tempTrainer,
args.percentage,
args.algorithm,
args.method,
str_to_include_params,
)
trainer = SparseUpdateTrainer(
model=model,
args=training_args,
mask=mask,
tempTrainer = tempTrainer,
train_dataset=train_dataset,
params_to_keep = str_to_include_params,
optimizers=(optimizer, None)
)
# start trainer
logging.info('Start training')
trainer.train()
trainer.save_model(episode_output_dir)
# run evaluation
if training_args.local_rank in [-1, 0] and (training_args.do_eval or training_args.do_predict):
# should we evaluate on dev, test, or both?
evaluation_splits = []
if training_args.do_eval:
evaluation_splits.append('dev')
if training_args.do_predict:
evaluation_splits.append('test')
# should we evaluate on the final model and/or on all intermediate checkpoints?
evaluation_dirs = []
evaluation_dirs += ['']
# datasets to evaluate on
if data_args.eval_datasets is None:
eval_dataset_names = dataset_names
else:
eval_dataset_names = data_args.eval_datasets.split(',')
# evaluate all possible combinations of dev/test, model, and datasets
for comb in itertools.product(evaluation_splits, evaluation_dirs, eval_dataset_names):
split, evaluation_dir, dataset_name = comb
model_dir = os.path.join(episode_output_dir, evaluation_dir)
if model is None:
# we need to load the model
model = AutoModelForSeq2SeqLM.from_pretrained(
model_dir,
config=config,
)
if len(evaluation_dir) > 0:
logging.info(f'Evaluate {evaluation_dir} on {dataset_name} {split}')
else:
logging.info(f'Evaluate on {dataset_name} {split}')
res = evaluate(
model=model, dataset_name=dataset_name, data_args=data_args, tokenizer=tokenizer, split=split,
seed=ep_idx, batch_size=training_args.per_device_eval_batch_size, gpu=args.gpu
)
# store results
evaluation_results[comb].append(res)
# print results
if args.verbose_results:
print_results(res)
# save results to file
with open(
os.path.join(model_dir, evaluation_output_filename + f'-{dataset_name}-{split}.json'), 'w'
) as f:
json.dump(res, f, indent=0)
# print average results and save them to file
for comb, results in evaluation_results.items():
split, evaluation_dir, dataset_name = comb
print()
logging.info(
f'Average of {split} results over {len(results)} episodes ({dataset_name} {evaluation_dir}):'
)
res = get_avg_results(results)
# print average results
print_results(res)
for key, value in res.items():
s = key
print(s)
if isinstance(value, (list, tuple)):
mean, std = value
print({s + '_mean': mean})
print({s + '_std': std})
# save average results to file
filename = evaluation_output_filename + f'-{dataset_name}-{split}'
if len(evaluation_dir) > 0:
filename += '-'
filename += f'{evaluation_dir}.json'
with open(os.path.join(output_dir, filename), 'w') as f:
json.dump(res, f, indent=0)
print()
logging.info(f'Model weights and intermediate checkpoints saved in {output_dir}')
if __name__ == "__main__":
main()