Machine Learning, Computer Vision, Natural Language Processing
Introduction to ML operation scientific and visualization libraries - pandas, numpy, matplotlib, seaborn...
- Train Test Split
- Categorical features
- Missing values
- Scaling Data
- Linear Regression
- Ridge & Lasso regression
- Polynomial Functions
- Algo's used as both Regressors and Classifiers
- K-Nearest Neighbors (KNN)
- Logistic Regression
- Decision Trees
- Support Vector Machine (SVM)
- Boosting Algos
- K-means
- Density based clustering
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Random Forest
- Bagging
- Voting
- Introduction to tensorflow,
- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- Autoencoders and GANs
- Approaches and use cases
- Deep Q Learning
- openAI
- Hyperparameter Tuning
- Cross-Validation
- Grid Search cross-validation for automatic selection of best parameters
- Regularization
- Seperate Validation dataset