Pykobo is a Python module that fetches data from Kobo forms via the Kobo API.
The data is returned as a pandas DataFrame making it easy to integrate in your workflow for further cleaning, filtering, aggregatation, etc...
Pykobo can:
- Get the list of forms a user has access to
- Fetch the data of a form (with names or labels for the columns and choices) as a pandas DataFrame
- Download a form in XLS or XML format
$ pip install pykobo
NB: The example below uses kf.kobotoolbox.org but pykobo also works with kobo.humanitarianresponse.info and any other Kobo server.
To get your API token, see here.
import pykobo
URL_KOBO = "https://kf.kobotoolbox.org/"
API_VERSION = 2
MYTOKEN = "2bc8e0201d23dac4ec1c334107698147b81513a2"
# Initialize the Manager object
km = pykobo.Manager(url=URL_KOBO, api_version=API_VERSION, token=MYTOKEN)
my_forms = km.get_forms()
This returns a Python list of KoboForm objetcs
print(my_forms)
[ KoboForm('tpz2buHAdXxcN0JVrZaSdk'),
KoboForm('vyARFbyE8Gv3RUvXNfdTRj'),
KoboForm('wogyYJzUu2ZFVnzqGg8K7q'),
KoboForm('bQLZapErE3UqqG9Avntkhd')]
# Each form contains metadata
for f in my_forms:
print(f.metadata)
{ 'date_created': '2022-07-14T20:44:11.929901Z',
'date_modified': '2022-10-02T07:49:19.714891Z',
'geo': True,
'has_deployment': True,
'name': 'Household survey',
'owner': 'pvernier',
'version_id': 'aqUMoSqANiEgH3j4Nn3Cr7'}
{ 'date_created': '2022-07-14T12:41:14.665314Z',
'date_modified': '2022-09-28T11:55:15.408542Z',
'geo': True,
'has_deployment': True,
'name': 'Health facilities monitoring',
'owner': 'pvernier',
'version_id': 'abLugnJGURSyyZ8RZxC0wQ'}
{ 'date_created': '2022-07-14T13:40:32.033446Z',
'date_modified': '2022-09-28T09:19:20.691620Z',
'geo': False,
'has_deployment': True,
'name': 'Post emergency evaluation',
'owner': 'pvernier',
'version_id': 'aQQUmPns7xLUL4Ro0amqwS'}
{ 'date_created': '2022-09-14T16:54:06.990672Z',
'date_modified': '2022-09-20T13:27:52.410261Z',
'geo': True,
'has_deployment': True,
'name': 'Identification of burnt areas',
'owner': 'pvernier',
'version_id': 'xes8JkQRpbDcbct9sqmCYZ'}
uid = 'tpz2buHAdXxcN0JVrZaSdk'
my_form = km.get_form(uid)
print(my_form.metadata)
{ 'date_created': '2022-07-14T20:44:11.929901Z',
'date_modified': '2022-10-02T07:49:19.714891Z',
'geo': True,
'has_deployment': True,
'name': 'Household survey',
'owner': 'pvernier',
'version_id': 'aqUMoSqANiEgH3j4Nn3Cr7'}
my_form.fetch_data()
# The data is accessible via the `data` attribute as a pandas DataFrame
print(my_form.data)
start end today username deviceid phonenumber ... _submission_time _tags _notes _validation_status _submitted_by _index
0 2022-09-01T15:47:55.797+02:00 2022-09-01T15:51:48.302+02:00 2022-09-01 surveyer_1 collect:4vUec4gLVJx3GP1D NaN ... 2022-09-01T13:52:04 [] [] {} surveyer_1 1
1 2022-09-01T15:58:08.251+02:00 2022-09-01T16:08:14.548+02:00 2022-09-01 surveyer_1 collect:Xk9Z5f1VTW5nig68 NaN ... 2022-09-01T14:08:46 [] [] {} surveyer_1 2
2 2022-09-01T14:05:08.484+02:00 2022-09-01T16:17:59.305+02:00 2022-09-01 surveyer_1 collect:0Y8Cozz5fzI8jczs NaN ... 2022-09-01T14:18:36 [] [] {} surveyer_1 3
3 2022-09-01T16:20:39.699+02:00 2022-09-01T16:32:03.393+02:00 2022-09-01 surveyer_1 collect:MPi52tvGiPY6AuK3 NaN ... 2022-09-01T14:32:27 [] [] {} surveyer_1 4
...
...
[595 rows x 38 columns]
print(type(my_form.data))
<class 'pandas.core.frame.DataFrame'>
# The method `fetch_data` returns the data using the Kobo columns and choices names
print(my_form.data.columns)
Index(['start', 'end', 'today', 'username', 'deviceid', 'phonenumber', 'date',
'health_area', 'village_name', 'team_number', 'cluster_number',
'household_number', 'gps', '_gps_latitude', '_gps_longitude',
'_gps_altitude', '_gps_precision', 'hhh_present',
'age_hhh', 'consent', 'number_children',
'__version__', '_id', '_uuid', '_status', '_submission_time',
'_tags', '_notes', '_validation_status', '_submitted_by', '_index'],
dtype='object')
my_form.display(columns_as='label', choices_as='label')
print(my_form.data.columns)
Index(['start', 'end', 'today', 'username', 'deviceid', 'phonenumber',
'Date of the survey', 'Health zone', 'Name of the village', 'team number',
'Cluster number', 'Household number', 'GPS Coordinates',
'_GPS Coordinates_latitude', '_GPS Coordinates_longitude',
'_GPS Coordinates_altitude', '_GPS Coordinates_precision',
'Head of the household present?',
'Age of the head of the household ',
'Consent obtained',
'Number of children in the household',
'__version__', '_id', '_uuid', '_status', '_submission_time', '_tags',
'_notes', '_validation_status', '_submitted_by', '_index'],
dtype='object')
# You can go back and forth between names and labels as much as you want
my_form.display(columns_as='label', choices_as='name')
my_form.display(columns_as='name', choices_as='label')
my_form.display(columns_as='name', choices_as='name')
my_form.display(columns_as='label', choices_as='label')
-
For questions of type
select_multiple
the different answers are separated by a '|'. -
If a form contains
n
columns with the same label, a suffix(1)
to(n)
will be added to each of the columns.
Repeats are supported (only one level, not repeats inside repeats). In this case data of the repeat groups are separated from the 'main' data and accessible via the 'repeats' attribute which returns a Python dictionary
print(my_form.has_repeats)
True
# This means that the form has at least 1 repeat group
print(my_form.repeats.keys())
dict_keys(['children_questions'])
# The form has 1 repeat group called 'children_questions'
print(my_form.repeats['children_questions'])
index_repeat Sex of the child Age of the child ... Going to school? _parent_index
0 1 Male No 2
1 2 Female No 2
2 1 Female No 4
3 1 Female Yes 5
4 2 Female No 5
...
...
[1040 rows x 27 columns]
The column _index
in the main DataFrame (my_form.data) and the column _parent_index
in the DatFrame of the repeat
group can be used to join the 2 DataFrames.
df_join = pd.merge(
my_form.data,
my_form.repeats['groupe_questions_enfants'],
how="left",
left_on='_index',
right_on='_parent_index'
)
Because the data is a pandas DataFrame, we can take advantage of the many pandas methods to export it to a file.
# CSV
df_join.to_csv('household_survey.csv', index=False)
# Excel
df_join.to_excel('household_survey.xlsx', index=False)
my_form.download_form('xls')
This downloads the XLSForm tpz2buHAdXxcN0JVrZaSdk.xls
in the current working directory
Pykobo has a bunch of utility methods that make easy to clean you data (not documented yet).
Pykobo only reads and fetches data from Kobo forms. It doesn't update or delete the forms and their data on the Kobo server.
- requests
- pandas
- numpy
- Add possibility to display group name as a prefix
- Add method to download media files
- Clean and document utility functions
- Be more consistent and robust in case of errors
- Calculate stats on forms time duration