-
Notifications
You must be signed in to change notification settings - Fork 9
/
PAW_results.py
1519 lines (1358 loc) · 65.8 KB
/
PAW_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""program "PAW_results.py"
Produces a protein results table and a peptide results table.
This is the protein inference step in the PAW analysis pipeline for Comet searches
of extremely large data sets.
Written by Phil Wilmarth, 2007-2017, OHSU.
The MIT License (MIT)
Copyright (c) 2017 Phillip A. Wilmarth and OHSU
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Direct questions to:
Technology & Research Collaborations, Oregon Health & Science University,
Ph: 503-494-8200, FAX: 503-494-4729, Email: techmgmt@ohsu.edu.
"""
# added tracking and reporting of peptide and protein FDRs (1/10/11 -PW)
# removed lots of legacy code (SEQUEST and DTASelect support) -PW 5/11/2016
# made tables easier to read into R -PW 2/13/2019
"""To do:
Keep dta_name variable??? Yes, dta_name is a handy key...
ntt determination should be from routine in PAW_lib
ACTUALLY SHOULD BE FROM NTT ATTRIBUTES. That needs some work to do -
may need to use tuples for dictionary values (currently counts, need to add ntt)
Make same set grouping and subset removal into functions
Make report table generations into three functions
"""
VERSION = 'v1.0.9'
# set protein ID criteria here
minimum_peptide_per_protein = 2 # min. number distinct peptides/protein/sample2
# set peptide requirements here
minimum_ntt_per_peptide = 2 # how many ntt for distinct peptides?
# seldom changed parameters:
# turns on or off calculating sum of MS2 fragment ion intensities
calc_ms2_int = False
max_num_peaks = 50
# turn on reporting of all peptide copies (True) or just best scoring spectrum (False)
full_peptide_list = True # needs to be True for TMT data processing
# True for parsimony filtering, Note: subset proteins will not have any unique peptides
remove_subsets = True
# others:
minimum_unique_per_protein = 0 # min. number UNIQUE peptides/protein/sample (this should usually be zero!)
multiple_charge_states_ok = False # are different charge states distinct?
modifications_ok = True # are modified peptides distinct?
allow_prot_nterm_acytl = False # +42 on M1 or Res2 considered as NTT=2
# NOTE: all parameters above are global in scope
###########################################################################################
######### coding starts here and below ####################################################
###########################################################################################
# global imports
import os
import time
import gzip
import sys
import re
import copy
import glob
import fnmatch
import PAW_lib
import PAW_protein_grouper
# some configuration parameters (also global in scope)
decoy_string = 'REV'
default_location = 'F:\PSR_Core_Analysis'
if not os.path.exists(default_location):
default_location = os.getcwd()
def is_peptide_valid(peptide):
"""Tests if peptides meet sufficient criteria.
Usage boolean = is_peptide_valid(peptide)
where "peptide" is a peptide sequence (with bounding amino acids).
Returns True if peptide criteria met and False otherwise.
"""
# see if N-term acetylation candidate
pep = peptide
nterm = False
if ']' in pep and allow_prot_nterm_acytl == True and (pep.startswith('M') or pep.startswith('-')):
nterm = True
pep = pep.replace(']', '') # remove nt mod symbol
# get ntt value
"""Should see if ntt needs to be replaced"""
NTT = ntt(pep.split('_')[0])
if nterm and pep.startswith('M'):
NTT = NTT + 1
# see if modifications are OK
if (len(peptide_mods(pep.split('_')[0])) > 0) and not modifications_ok:
print('failed mod test')
return False
# see if ntt criteria is satisfied (THIS IS ONLY CORRECT FOR TRYPSIN)
if NTT >= minimum_ntt_per_peptide:
return True
else:
return False
def is_protein_valid(prot, distinct_dict, unique_dict):
"""Test proteins for sufficient per sample evidence.
Usage boolean = is_protein_valid(prot, distinct_dict, unique_dict)
where "prot" is a PAW_Protein instance, "distinct_dict" is a
list of full peptide sequences (with bounding amino acids) plus
appended charge state, and "unique_dict" is ...
Returns True if protein criteria met and False otherwise.
"""
# remember that "distinct" keys have charge appended to sequence
valid_peptides = {}
unique_peptides = {}
for peptide in distinct_dict.keys():
if not is_peptide_valid(peptide):
continue
if not multiple_charge_states_ok: # are two different charge states OK
peptide = peptide[:-2]
valid_peptides[peptide] = 1
for hit in prot.tophit_list:
unique_peptides[hit.Filename] = unique_dict.get(hit.Filename, 0)
# count number of distinct, valid peptides
## # this filters out one-hit wonders only
## if ((sum(valid_peptides.values()) >= minimum_peptide_per_protein) and
## (sum(unique_peptides.values()) >= minimum_unique_per_protein) and
## sum(valid_peptides.values()) < 2):
if ((sum(valid_peptides.values()) >= minimum_peptide_per_protein) and
(sum(unique_peptides.values()) >= minimum_unique_per_protein)):
prot.valid.append(True)
else:
prot.valid.append(False)
return
class PAW_Protein:
"""Holds information about distinct protein groups, no fields per se.
"""
def __init__(self):
self.locus_list = [] # list of PAW_Loci classes for protein group (may be one or more)
self.tophit_list = [] # list of PAW_TopHit classes for each MS/MS spectra
self.supersets = [] # list of protein group supersets (if any)
self.subsets = [] # list of proteins with peptide subsets contained in this set
self.spc_list = [] # list of total spectral count and total MS2 intensity per sample
self.valid = [] # list of valid protein flags per sample
def peptides(self):
"""Returns a set of peptides mapped to protein.
"""
peptides = {}
# loop over DTA files mapped to protein
for hit in self.tophit_list:
# see if different charge states of same peptide are OK
if multiple_charge_states_ok:
peptide = hit.distinct
else:
peptide = hit.distinct[:-2]
# peptide count is the dictionary value
if peptides.get(peptide, False):
peptides[peptide] = peptides[peptide] + 1
else:
peptides[peptide] = 1
# dictionary keys are the peptide set elements
return set(peptides.keys())
def peptides_strict(self):
"""Returns a set of strictly defined peptides mapped to protein.
"""
peptides = {}
# loop over DTA files mapped to protein
for hit in self.tophit_list:
if not is_peptide_valid(hit.Sequence):
continue
# see if different charge states of same peptide are OK
if multiple_charge_states_ok:
peptide = hit.distinct.split('.')[1] + hit.distinct[-2:]
else:
peptide = hit.distinct.split('.')[1]
# take care of I/L ambiguity
peptide = re.sub(r'[IL]', r'j', peptide)
# peptide count is the dictionary value
if peptide in peptides:
peptides[peptide] = peptides[peptide] + 1
else:
peptides[peptide] = 1
# dictionary keys are the peptide set elements
return set(peptides.keys())
class PAW_Locus:
"""Holds protein (locus) information.
"""
def __init__(self):
self.ID = 'Acession_Number'
self.DTACount = '2'
self.SpectrumCount = '2'
self.Coverage = '100.0'
self.SeqLength = '250'
self.MW = '25000'
self.pI = '5.7'
self.Description = 'A long text string'
def txt_parse_locus(self, line_items, col_map):
"""Loads locus data structure from PAW txt file line.
"""
self.ID = line_items[col_map['Loci']]
self.DTACount = 1
self.SpectrumCount = 1
self.Coverage = 0.0
self.SeqLength = 0
self.MW = 0.0
self.pI = 0.0
self.Description = ''
return
class PAW_TopHit:
"""Holds top hit peptide information.
"""
def __init__(self):
self.Filename = 'my_dta.100.100.2'
self.XCorr = '2.500'
self.DeltCN = '0.200'
self.NewDisc = '2.500'
self.PrecursorMass = '1500.0'
self.CalculatedMass = '1500.0'
self.TotalIntensity = '5000.0'
self.SpRank = '1'
self.FragmentIonPercentage = '50.0'
self.CopyCount = '1'
self.Sequence = 'K.VTDDFGHR.A'
self.Unique = 'FALSE'
# calculated fields:
self.DBUnique = 'FALSE'
self.distinct = 'K.VTDDFGHR.A_2'
self.ntt = 2
self.sample = 'sample'
self.beg = 0
self.end = 0
def txt_parse_tophit(self, line_items, dta_name, col_map):
"""Loads a tophit data structure from PAW txt line.
"""
self.Filename = dta_name
self.XCorr = line_items[col_map['Xcorr']]
self.DeltCN = line_items[col_map['deltaCN']]
self.NewDisc = line_items[col_map['NewDisc']]
self.PrecursorMass = line_items[col_map['expM']]
self.CalculatedMass = line_items[col_map['theoM']]
self.TotalIntensity = '0.0'
self.SpRank = line_items[col_map['SpRank']]
self.FragmentIonPercentage = '0.0'
self.CopyCount = 1
self.Sequence = line_items[col_map['Sequence']]
self.Unique = 'FALSE'
self.distinct = self.Sequence + '_' + self.Filename[-1]
self.ntt = line_items[col_map['ntt']]
return
class FDR_Counter:
"""Data structure of counters for various target and decoy matches.
"""
def __init__(self):
self.FR = ['F', 'R'] # target or decoy
self.NTT = ['0', '1', '2'] # number of tryptic termini
self.Z = ['1', '2', '3', '4'] # peptide charge states
"""need to handle new terminla mod definitions"""
self.mods = ['*', '#', '@', '^', '~', '$', '[', ']']
self.unmod = [ [ [0 for z in self.Z] for ntt in self.NTT] for fr in self.FR] # unmodified peptide counters
self.mod = [ [ [0 for z in self.Z] for ntt in self.NTT] for fr in self.FR] # modified peptide counters
self.distinct = {} # dictionary for distinct decoy sequences (conditioned on valid peptide criteria)
self.tot_target = 0
self.tot_valid_target = 0
self.tot_decoy = 0
self.tot_valid_decoy = 0
def increment(self, seq, z, ntt, fr):
"""Increments counters for z, ntt, fr class.
"""
# test for valid z, ntt, and fr values
if z not in self.Z:
print('...FDR_counter WARNING: %s out of charge state range' % (z,))
return
if ntt not in self.NTT:
print('...FDR_counter WARNING: %s out of NTT range' % (ntt,))
return
if fr not in self.FR:
print('...FDR_counter WARNING: %s is not "F" or "R"' % (fr,))
return
# check seq for mods and if it meets valid peptide criteria
unmod = False
mod = False
num_mods = 0
valid = is_peptide_valid(seq)
temp = seq.split('.') # remove bounding residues if present
if len(temp) > 0:
seq = temp[1]
num_mods = len(peptide_mods(seq))
if num_mods == 0: # unmodified peptides
unmod = True
else:
mod = True
# increment the appropriate counters
Z = int(z) - 1
NTT = int(ntt)
if fr == 'F':
FR = 0
self.tot_target += 1
if valid:
self.tot_valid_target += 1
else:
FR = 1
self.tot_decoy += 1
if valid:
self.tot_valid_decoy += 1
self.distinct[seq] = True
if unmod:
self.unmod[FR][NTT][Z] += 1
else:
self.mod[FR][NTT][Z] += 1
return
def report(self, write):
"""Prints out a report with the FDR information.
"""
for obj in write:
print('\n########### FDR REPORT ############', file=obj)
print('\nunmodified peptides:', file=obj)
for ntt in [2, 1, 0]:
string = 'ntt=%s: ' % (ntt,)
for z in [0, 1, 2, 3]:
try:
rate = 100 * float(self.unmod[1][ntt][z]) / float(self.unmod[0][ntt][z])
except ZeroDivisionError:
rate = 0.0
string += '%s(%s)%0.2f, ' % (self.unmod[0][ntt][z], self.unmod[1][ntt][z], rate)
print(string, file=obj)
print('\nmodified peptides:', file=obj)
for ntt in [2, 1, 0]:
string = 'ntt=%s: ' % (ntt,)
for z in [0, 1, 2, 3]:
try:
rate = 100 * float(self.mod[1][ntt][z]) / float(self.mod[0][ntt][z])
except ZeroDivisionError:
rate = 0.0
string += '%s(%s)%0.2f, ' % (self.mod[0][ntt][z], self.mod[1][ntt][z], rate)
print(string, file=obj)
print('\ndistinct decoy sequences: %s' % (len(self.distinct),), file=obj)
try:
rate = 100 * float(self.tot_decoy) / float(self.tot_target)
except ZeroDivisionError:
rate = 0.0
print('total matches: %s (%s) %0.2f' % (self.tot_target, self.tot_decoy, rate), file=obj)
try:
rate = 100 * float(self.tot_valid_decoy) / float(self.tot_valid_target)
except ZeroDivisionError:
rate = 0.0
print('total valid matches: %s (%s) %0.2f' % (self.tot_valid_target, self.tot_valid_decoy, rate), file=obj)
# end class FDR_Counter
"""Only need database name! Do not need a data container."""
def get_database(folder):
"""Get FASTA database name from a Comet parameters file or an SQT file header.
"""
database = ''
if os.path.exists(os.path.join(folder, 'comet.params')): # get DB from params file
for line in open(os.path.join(folder, 'comet.params')):
line = line.strip()
if line.startswith('database_name'):
database = line.split('= ')[1]
elif os.path.exists(os.path.join(folder, 'sequest.params')): # get DB from params file
for line in open(os.path.join(folder, 'sequest.params')):
line = line.strip()
if line.startswith('first_database_name'):
database = line.split('= ')[1]
# try getting database from SQT files
else:
hbuff = []
try:
# get header lines
if glob.glob('*.sqt')[0]:
for line in open(glob.glob('*.sqt')[0]):
if line.startswith('H'):
hbuff.append(line.strip())
if line.startswith('S'):
break
elif glob.glob('*.sqt.gz')[0]:
for line in gzip.open(glob.glob('*.sqt.gz')[0]):
if line.startswith('H'):
hbuff.append(line.strip())
if line.startswith('S'):
break
# extract DB from header
for line in hbuff:
if line.startswith('H\tDatabase'):
database = line.split('\t')[2]
except IndexError:
print('...WARNING: no params file or SQT files')
if not os.path.exists(database): # browse to database if path not found
ext_list = [('FASTA files', '*.fasta'), ('Zipped files', '*.gz'), ('All files', '*.*')]
title = 'Please locate the FASTA file'
database = PAW_lib.get_file(default_location, ext_list, title)
return database
def load_results_from_txt_files(txt_file_list, txt_to_sample, write):
"""Loads results from PAW "txt" files.
"""
# build a (partial) PAW_Protein list from the filtered txt files
matches = {}
proteins = []
fdr = FDR_Counter()
for txt_file in txt_file_list:
# get the header line and make the column map
col_map = {}
txt_base_name = os.path.basename(txt_file)
base_name = txt_base_name.replace('.txt.gz', '') # do the longer possible extension first
base_name = base_name.replace('.txt', '') # in case the extension was not '.txt.gz'
try:
if txt_file.endswith('.gz'):
contents = [x.strip() for x in gzip.open(txt_file).readlines()]
else:
contents = [x.strip() for x in open(txt_file,'r').readlines()]
for obj in write:
print('...processing', os.path.split(txt_file)[1], file=obj)
except:
for obj in write:
print('...WARNING: TXT and SQT file mis-match', file=obj) # TXT list built from SQT list
continue
try:
if contents[0].startswith('start\tend'): # test for PAW header line
for i, item in enumerate(contents[0].split('\t')):
col_map[item] = i
else:
print('...WARNING: non-PAW TXT file:', base_name)
continue
except IndexError:
print('...WARNING: empty TXT file:', base_name)
continue
for line in contents[1:]:
temp = line.split('\t')
fdr.increment(temp[col_map['Sequence']], temp[col_map['Z']], temp[col_map['ntt']], temp[col_map['ForR']]) # count target, decoy matches
name_list = [base_name] + [str(int(x)) for x in temp[:3]]
dta_name = '.'.join(name_list)
prot = temp[col_map['Loci']]
# if protein already in "matches" dictionary, add the DTA information
if matches.get(prot, False):
old_prot = matches[prot]
new_tophit = PAW_TopHit()
new_tophit.txt_parse_tophit(temp, dta_name, col_map)
new_tophit.sample = txt_to_sample[txt_base_name]
old_prot.tophit_list.append(copy.deepcopy(new_tophit))
old_prot.locus_list[0].DTACount += 1
old_prot.locus_list[0].SpectrumCount += 1
matches[prot] = old_prot
# if not, add a new protein match to "matches" dictionary
else:
new_prot = PAW_Protein()
new_locus = PAW_Locus()
new_locus.txt_parse_locus(temp, col_map)
new_prot.locus_list.append(copy.deepcopy(new_locus))
new_tophit = PAW_TopHit()
new_tophit.txt_parse_tophit(temp, dta_name, col_map)
new_tophit.sample = txt_to_sample[txt_base_name]
new_prot.tophit_list.append(copy.deepcopy(new_tophit))
matches[prot] = copy.deepcopy(new_prot)
# print out the FDR information
fdr.report(write)
# need strict list of peptides for each protein: minimum ntt, allow modifications or not, I/L, etc.
prot_pep_list = {}
for prot in matches.keys():
prot_pep_list[prot] = matches[prot].peptides_strict()
#############################################################
"""this should be a function. we do this more than once"""
# make list of proteins sorted by (strict) number of peptides
prot_list = []
for prot in matches.keys():
prot_list.append((len(matches[prot].peptides_strict()), prot))
prot_list.sort()
##############################################################
# skip proteins with too few peptides to speed things up
try:
skip = [x[0] for x in prot_list].index(minimum_peptide_per_protein)
except ValueError:
skip = 0
for obj in write:
print('\n################ PARSIMONY REPORT ###############', file=obj)
print('\n there were', len(matches), 'protein matches', file=obj)
print(' there were', skip, 'proteins with too few potential peptide(s)', file=obj)
# clean up "matches" by removing skipped proteins
for x, acc in prot_list[:skip]:
del matches[acc]
for obj in write:
print(' new matches length is:', len(matches), file=obj)
##############################################################
"""this should be a function
should have a protein sorting function with option for ascending or descending"""
# find redundant proteins to group together
redundant_group = 1
redundants = {}
for i in range(skip, len(prot_list)):
for j in range(i+1, len(prot_list)):
s1 = prot_pep_list[prot_list[i][1]]
s2 = prot_pep_list[prot_list[j][1]]
if s1.issubset(s2) and len(s1) == len(s2):
if redundants.get(prot_list[i][1], False):
redundants[prot_list[j][1]] = redundants[prot_list[i][1]]
else:
redundants[prot_list[i][1]] = redundant_group
redundants[prot_list[j][1]] = redundant_group
redundant_group += 1
# collaspe the redundant groups
to_group = {}
for (prot, group) in redundants.items():
if to_group.get(group, False):
temp = to_group[group]
temp.append(prot)
temp.sort()
temp.insert(0, temp.pop())
to_group[group] = temp
else:
to_group[group] = [prot]
summary = list(to_group.items())
summary.sort()
for group_number, group_list in summary:
group_list.sort() # this determines protein group order
keeper = group_list[0]
for redundant in group_list[1:]:
temp = matches[redundant].locus_list[0]
matches[keeper].locus_list.append(copy.deepcopy(temp))
# print out any redundant sets that are not exactly identical
keep_set = matches[keeper].peptides()
redun_set = matches[redundant].peptides()
if keep_set != redun_set:
keep_keys = sorted(list(keep_set))
redun_keys = sorted(list(redun_set))
for obj in write:
print('\n redundant "mis-match": %s and %s' %
(matches[keeper].locus_list[0].ID, matches[redundant].locus_list[0].ID), file=obj)
for i, first in enumerate(keep_keys):
try:
for obj in write:
if first != redun_keys[i]:
print(' %s %s %s' % (i, first, redun_keys[i]), file=obj)
except IndexError:
for obj in write:
print(' %s %s' % (i, first), file=obj)
#
del matches[redundant]
for obj in write:
print(' (%s) redundant group: %s' % (group_number, group_list), file=obj)
for obj in write:
print('\n now matches is this long:', len(matches), file=obj)
# build the list of protein objects sorted by accession
proteins_list = []
for i in range(skip, len(prot_list)):
try:
proteins_list.append((prot_list[i][1], matches[prot_list[i][1]]))
except KeyError: # redundant proteins have been deleted from "matches"
pass
proteins_list.sort()
for prot in proteins_list:
proteins.append(prot[1])
################################################
################################################
"""This should be a function"""
# identify any protein/groups with peptide sets that are subsets
# need to rebuild sets keyed to index in "proteins"
prot_pep_list = {}
for i in range(len(proteins)):
prot_pep_list[i] = proteins[i].peptides_strict()
# make list of proteins sorted by number of peptides
prot_list = []
keys = list(prot_pep_list.keys())
keys.sort()
for prot in keys:
prot_list.append((len(prot_pep_list[prot]), prot))
prot_list.sort()
# test for subsets
for i in range(len(prot_list)):
for j in range(i+1, len(prot_list)):
s1 = prot_pep_list[prot_list[i][1]]
s2 = prot_pep_list[prot_list[j][1]]
if s1.issubset(s2):
proteins[prot_list[i][1]].supersets.append(prot_list[j][1])
proteins[prot_list[j][1]].subsets.append(prot_list[i][1])
# replace list of indexes with list of accessions for each protein
for prot in proteins:
superset_temp = []
for index in prot.supersets:
temp = []
for locus in proteins[index].locus_list:
temp.append(locus.ID)
if len(temp) != 0:
superset_temp.append(temp)
if len(superset_temp) != 0:
prot.supersets = superset_temp
#
subset_temp = []
for index in prot.subsets:
temp = []
for locus in proteins[index].locus_list:
temp.append(locus.ID)
if len(temp) != 0:
subset_temp.append(temp)
if len(subset_temp) != 0:
prot.subsets = subset_temp
# print information about subsets before removing them from "proteins"
subset_list = []
for obj in write:
print(file=obj)
for i, prot in enumerate(proteins):
if len(prot.supersets) != 0:
subset_list.append(i)
subset = [x.ID for x in prot.locus_list]
for obj in write:
print(' %s- %s subset of %s' % (i, subset, prot.supersets), file=obj)
for obj in write:
print(file=obj)
subset_list.reverse() # have to delete from top to bottom
if remove_subsets:
for i in subset_list:
del proteins[i]
## # print information from the supersets data
## for i, prot in enumerate(proteins):
## if len(prot.subsets) != 0:
## superset = [x.ID for x in prot.locus_list]
## print(' %s- %s superset of %s' % (i, superset, prot.subsets))
## print()
#
for obj in write:
print(' length of proteins is: %s\n' % (len(proteins),), file=obj)
return proteins
######################################################################
def reversed_hit(locus_list, decoy_string):
"""Checks if any proteins are reversed (decoy) entries.
"""
rev = False
for loci in locus_list:
if decoy_string in loci.ID:
rev = True
return rev
def ntt(sequence):
"""Counts number of tryptic termini for peptides with bounding residues.
"""
"""This has already been computed in the TXT files. Need to use that instead! (otherwise need to know enzyme)"""
ntt = 0
parts = sequence.split('.')
if len(parts) < 3:
print(' ### WARNING: need bounding residues to determine ntt! ###')
else:
length, ntt = PAW_lib.amino_acid_count(sequence) # this is going to be trypsin!
return ntt
def get_database_proteins(fasta_full_name, proteins, write):
"""Get FASTA database entries for the identified proteins.
Usage: (DBProteins, DB_map, fasta_file_name, DB_total) = get_database_proteins(database, proteins, write),
where "DBProteins" is the list of FASTA objects, "DB_map" is a dictionary of accessions to indices,
"fasta_file_name" is the basename for the database, "DB_total" is the toal number
of proteins in the FASTA database, "database" is the path to the FASTA database,
"proteins" is the list of identified proteins, and "write" is for console and log file use.
"""
# if database path can't be found, then browse to database
if not os.path.exists(fasta_full_name):
fasta_name = os.path.basename(fasta_full_name)
# bugger in an alternative database location:
if os.path.exists(os.path.join('E:\Carr_plasma\databases', fasta_name)):
fasta_full_name = os.path.join('E:\Carr_plasma\databases', fasta_name)
else:
print('...select the FASTA file')
extensions = [('FASTA files', '*.fasta')]
title = 'Select the %s database' % (os.path.basename(database),)
fasta_full_name = PAW_lib.get_file(default, extensions, title)
if not fasta_full_name: sys.exit() # cancel button repsonse
fasta_name = os.path.basename(fasta_full_name)
# make a dictionary of identified loci so we don't have to load all proteins
prot_id_map = {}
for prot in proteins:
for loci in prot.locus_list:
prot_id_map[loci.ID] = True
# open FASTA reader and create a Protein instance.
for obj in write:
print('...reading:', fasta_name, file=obj)
f = PAW_lib.FastaReader(fasta_full_name)
p = PAW_lib.Protein()
# start looping over FASTA entries and keep the ones we need
DBProteins = []
DB_map = {}
DB_len = 0
DB_total = 0
while f.readNextProtein(p): # lets get everything copied into the data structures
DB_total += 1
if p.accession in prot_id_map:
DBProteins.append(copy.deepcopy(p))
DB_map[p.accession] = DB_len
DB_len += 1
for obj in write:
print('...closing database (%s entries)...' % (DB_total,), file=obj)
# compute coverage, length, and MW (needed when reading PAW TXT files)
for prot in proteins:
for loci in prot.locus_list:
seq_dict = {}
for hit in prot.tophit_list:
seq_dict[hit.Sequence] = True
try:
loci.Coverage = '%0.01f' % (DBProteins[DB_map[loci.ID]].calcCoverage(seq_dict.keys())[0],)
loci.SeqLength = DBProteins[DB_map[loci.ID]].seqlenProtein()
loci.MW = '%0.0f' % (DBProteins[DB_map[loci.ID]].molwtProtein(),)
except KeyError: # phrog DB
loci.Coverage = '%0.01f' % (DBProteins[DB_map[loci.ID.split()[0]]].calcCoverage(seq_dict.keys())[0],)
loci.SeqLength = DBProteins[DB_map[loci.ID.split()[0]]].seqlenProtein()
loci.MW = '%0.0f' % (DBProteins[DB_map[loci.ID.split()[0]]].molwtProtein(),)
# loop over proteins and get description strings
for prot in proteins:
for loci in prot.locus_list:
try:
loci.Description = DBProteins[DB_map[loci.ID]].description
except KeyError: # phrog DB
loci.Description = DBProteins[DB_map[loci.ID.split()[0]]].description
#
for obj in write:
print('...done updating accessions and descriptions...', file=obj)
return (DBProteins, DB_map, fasta_name, DB_total)
def compute_ms2_intensity(proteins, all_ms2, folder, write):
"""Computes total MS2 intensity from DTA files.
Usage: compute_ms2_intensity(proteins, all_ms2, folder)
where "proteins" is list of PAW_Protein objects, "all_ms2"
is a dictionary of all protein matches of each MS2 file (by protein
list index and tophit_list index), and "folder" is the
folder containing the filtered MS2 format files.
"""
# Assumes that MS2 files are in the same location as the TXT files,
# open each MS2 file, build the filename for each scan, and check
# it against the 'all_ms2' list. If so, calculate DTA fragment ion sum
# and replace the field(s) in the corresponding (protein, tophit) data structure.
# max_num_peaks is a global set near top of module.
os.chdir(folder)
ms2_list = glob.glob('*.ms2')
if not ms2_list:
ms2_list = glob.glob('*.ms2.gz')
if not ms2_list:
print('...WARNING: MS2 file(s) were not found!')
return
for ms2 in ms2_list:
if ms2.endswith('.gz'):
ms2_file = gzip.open(ms2)
else:
ms2_file = open(ms2, 'r')
buff = [] # temporary buffer to hold data for one MS2 scan
for line in ms2_file:
if line.startswith('H'): # skip header lines
continue
line = line.rstrip()
buff.append(line) # save lines in scan buffer
if line.startswith('S\t') and len(buff) > 1: # process previous scan block
file_name = []
start, end = buff[0].split('\t')[1], buff[0].split('\t')[2] # start, stop scan numbers
start = str(int(start))
end = str(int(end))
for top in buff[:15]: # parse enough top lines to get charge states
if top.startswith('Z'): # get the charge state from the Z line(s)
z = top.split('\t')[1]
dta_name = ms2[:-3] + start + '.' + end + '.' + z # build original DTA filename
if dta_name in all_ms2:
file_name.append(dta_name)
for f in file_name: # file_name list might be empty most of the time
frag_int = []
for i in range(len(buff)): # get fragment ion intensities
if buff[i].startswith('S\t') or buff[i].startswith('Z\t') or buff[i].startswith('I\t'):
continue
frag_int.append(float(buff[i].split()[1]))
frag_int.sort()
frag_int.reverse()
int_sum = sum(frag_int[:max_num_peaks]) # sum up desired number of peaks
for i in range(len(all_ms2[f])): # DTA may match to more than one protein
prot, hit = all_ms2[f][i] # get protein, tophit indices for new TotalIntensity
proteins[prot].tophit_list[hit].TotalIntensity = int_sum
# reset scan buffer
buff = []
buff.append(line)
# process the last buffer
if len(buff) > 1:
file_name = []
start, end = buff[0].split('\t')[1], buff[0].split('\t')[2] # start, stop scan numbers
for j in buff[:15]: # parse enough top lines to get charge states
if j.startswith('Z'):
z = j.split('\t')[1] # get the charge state from the Z line(s)
dta_name = ms2[:-3] + start + '.' + end + '.' + z # build original DTA filename
if dta_name in all_ms2:
file_name.append(dta_name)
for f in file_name:
frag_int = []
for i in range(len(buff)): # get fragment ion intensities
if buff[i].startswith('S\t') or buff[i].startswith('Z\t') or buff[i].startswith('I\t'):
continue
frag_int.append(float(buff[i].split()[1]))
frag_int.sort()
frag_int.reverse()
int_sum = sum(frag_int[:max_num_peaks]) # sum up desired number of peaks
for i in range(len(all_ms2[f])): # DTA may match to more than one protein
prot, hit = all_ms2[f][i] # get protein, tophit indices for new TotalIntensity
proteins[prot].tophit_list[hit].TotalIntensity = int_sum
#
for obj in write:
print('...done calculating fragment ion intensity sums...', file=obj)
#
return
def peptide_mods(peptide):
"""Looks for modification symbols in peptides. Returns list of mod symbols.
THIS NEEDS TO BE CHANGED TO HANDLE NEW COMET MODS
"""
# see if there are bounding residues
temp = peptide.split('.')
if len(temp) > 1:
peptide = temp[1]
# check for Comet modification symbols (also has older style n-term and c-term symbols)
mod_list = []
for char in peptide:
if char in ['*', '#', '@', '^', '~', '$', '%', '!', '+', 'n', 'c', '[', ']']:
mod_list.append(char)
#
return mod_list
def get_filter_tag(accession, decoy_string, count):
"""Checks if accession number corresponds to a decoy or contaminant.
"""
tag = ''
if 'CONT|' in accession or 'CONT_' in accession:
tag = 'contaminant'
if decoy_string in accession:
tag = 'reversed'
if count > 0:
tag = 'redundant'
return tag
def calc_split_count(prot, proteins, all_ms2_sample, s):
"""Calculates total SpC after spliting shared peptide counts.
Also normalizes counts (adds 0.15 [or 100.0] to all zero values).
"""
other_loci = {}
split_count_total = 0.0
# get correct values if using intensities
if calc_ms2_int:
self_unique = float(prot.spc_list[s][3])
else:
self_unique = float(prot.spc_list[s][1])
for hit in prot.tophit_list: # loop over all MS2 for protein "prot"
if calc_ms2_int:
value = float(hit.TotalIntensity)
else:
value = 1.0 # what we are splitting (a count or MS2 intensity)
other_unique = 0.0
if hit.Filename in all_ms2_sample:
if len(all_ms2_sample[hit.Filename]) > 1:
# split counts based on relative unique counts per sample
for (p, x) in all_ms2_sample[hit.Filename]:
if calc_ms2_int:
other_unique += float(proteins[p].spc_list[s][3])
else:
other_unique += proteins[p].spc_list[s][1]
try:
split_count_total += value * (self_unique / other_unique)
except ZeroDivisionError: # do equal splitting if zero unique total
split_count_total += value / float(len(all_ms2_sample[hit.Filename]))
else:
split_count_total += value
if calc_ms2_int:
try:
if split_count_total < .0001:
split_count_total = 0.0
value = split_count_total
if value < 0.0:
value = 0.0
except:
print(' calc_split_count WARNING: calc_ms2_int try except failed')
value = 0.0
else:
value = split_count_total
return ('%0.03f' % (value,))
#######################################################################################
# Main program to compile protein results from groups of filtered SQT/TXT files.
# Groups should be a collection of related samples comprising a single proteome
# The result will be a single list of valid proteins
# 5/2/08 -PW
# 6/10/08 - Added full accession number lookup since SEQUEST truncates Acc. No.s -PW
# 7/5/08 - trap duplicate DTAfile entries in the DTASelect-filter.xml file
# - added MS2 Intensity table in addition to the spectral count table. -PW
# 4/23/09 - Improved reports and added partitioning SpC by unique peptide counts. -PW
# 1/1/2010 - Direct processing of PAW TXT files added (DTASelect no longer needed). -PW
# 3/30/2010 - Checked Parsimony logic, added more reporting of subsets, rejected proteins. -PW
# 8/2014 - Added dynamic parsing of TXT files so new filtered files are handled.
# - Removed some out-of-date code sections. -PW
# 5/11/2016 - Removing legacy support sections and cleaning up comment style -PW
# 8/29/2017 - Updated for Python 3 -PW
# 10/04/2020 - Added sample mapping from file support -PW
#######################################################################################
print('=====================================================')
print(' program PAW_results.py, %s, Phil Wilmarth, OHSU ' % VERSION)
print('=====================================================')
# let user browse to folder with filtered sqt files
decoy = decoy_string
default = default_location
if default == '' or not os.path.exists(default):
default = os.getcwd()
print('\n...select folder of filtered files')
filtered_folder = PAW_lib.get_folder(default, 'Select folder of filtered files')
if not filtered_folder: sys.exit() # cancel button response
# put protein and peptide files in a "results_files" folder
results_folder = os.path.join(os.path.dirname(filtered_folder), 'results_files')
if not os.path.exists(results_folder):
os.mkdir(results_folder)
# set up the log file in results folder
log_obj = open(os.path.join(results_folder, 'PAW_results.log'), 'wt')
write = [None, log_obj]
print('\n>>> starting PAW_results (%s) at: %s' % (VERSION, time.ctime()), file=log_obj)