diff --git a/dev/classes_idtxl.png b/dev/classes_idtxl.png index a17adede..8200e100 100644 Binary files a/dev/classes_idtxl.png and b/dev/classes_idtxl.png differ diff --git a/docs/doctrees/environment.pickle b/docs/doctrees/environment.pickle index de5ac3f8..299d9755 100644 Binary files a/docs/doctrees/environment.pickle and b/docs/doctrees/environment.pickle differ diff --git a/docs/doctrees/idtxl.doctree b/docs/doctrees/idtxl.doctree index 27d64c1d..96f6b0b3 100644 Binary files a/docs/doctrees/idtxl.doctree and b/docs/doctrees/idtxl.doctree differ diff --git a/docs/doctrees/idtxl_data_class.doctree b/docs/doctrees/idtxl_data_class.doctree index a6a4fc40..03ca570b 100644 Binary files a/docs/doctrees/idtxl_data_class.doctree and b/docs/doctrees/idtxl_data_class.doctree differ diff --git a/docs/doctrees/idtxl_estimators.doctree b/docs/doctrees/idtxl_estimators.doctree index ab40de08..fa56c64a 100644 Binary files a/docs/doctrees/idtxl_estimators.doctree and b/docs/doctrees/idtxl_estimators.doctree differ diff --git a/docs/doctrees/idtxl_results_class.doctree b/docs/doctrees/idtxl_results_class.doctree index 393896ed..552ddf56 100644 Binary files a/docs/doctrees/idtxl_results_class.doctree and b/docs/doctrees/idtxl_results_class.doctree differ diff --git a/docs/html/_modules/idtxl/active_information_storage.html b/docs/html/_modules/idtxl/active_information_storage.html index f7384a2c..fd3e7029 100644 --- a/docs/html/_modules/idtxl/active_information_storage.html +++ b/docs/html/_modules/idtxl/active_information_storage.html @@ -13,7 +13,6 @@ - @@ -679,7 +678,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/bivariate_mi.html b/docs/html/_modules/idtxl/bivariate_mi.html index 78b2a098..1739d369 100644 --- a/docs/html/_modules/idtxl/bivariate_mi.html +++ b/docs/html/_modules/idtxl/bivariate_mi.html @@ -13,7 +13,6 @@ - @@ -316,7 +315,7 @@

Source code for idtxl.bivariate_mi

         # Main algorithm.
         print('\n---------------------------- (1) include source candidates')
         self._include_source_candidates(data)
-        print('\n---------------------------- (2) prune cadidates')
+        print('\n---------------------------- (2) prune candidates')
         self._prune_candidates(data)
         print('\n---------------------------- (3) final statistics')
         self._test_final_conditional(data)
@@ -389,7 +388,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/bivariate_te.html b/docs/html/_modules/idtxl/bivariate_te.html index 95813ff7..f12fa53d 100644 --- a/docs/html/_modules/idtxl/bivariate_te.html +++ b/docs/html/_modules/idtxl/bivariate_te.html @@ -13,7 +13,6 @@ - @@ -321,7 +320,7 @@

Source code for idtxl.bivariate_te

         self._include_target_candidates(data)
         print('\n---------------------------- (2) include source candidates')
         self._include_source_candidates(data)
-        print('\n---------------------------- (3) prune cadidates')
+        print('\n---------------------------- (3) prune candidates')
         self._prune_candidates(data)
         print('\n---------------------------- (4) final statistics')
         self._test_final_conditional(data)
@@ -393,7 +392,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/data.html b/docs/html/_modules/idtxl/data.html index c6675941..908ec465 100644 --- a/docs/html/_modules/idtxl/data.html +++ b/docs/html/_modules/idtxl/data.html @@ -13,7 +13,6 @@ - @@ -80,7 +79,7 @@

Source code for idtxl.data

         >>> data_2.set_data(data_new, 's')
 
     Note:
-        Realisations are stored as attribute 'data'. This can only be set via 
+        Realisations are stored as attribute 'data'. This can only be set via
         the 'set_data()' method.
 
     Args:
@@ -874,9 +873,9 @@ 

Source code for idtxl.data

 
         Generate example data and overwrite the instance's current data. The
         network is used as an example the paper on the MuTE toolbox (Montalto,
-        PLOS ONE, 2014, eq. 14). The network consists of five autoregressive
-        (AR) processes with model orders 2 and the following (non-linear)
-        couplings:
+        PLOS ONE, 2014, eq. 14) and was orginially proposed by Baccala &
+        Sameshima (2001). The network consists of five autoregressive (AR)
+        processes with model orders 2 and the following (non-linear) couplings:
 
         0 -> 1, u = 2 (non-linear)
         0 -> 2, u = 3
@@ -884,6 +883,16 @@ 

Source code for idtxl.data

         3 -> 4, u = 1
         4 -> 3, u = 1
 
+        References:
+
+        - Montalto, A., Faes, L., & Marinazzo, D. (2014) MuTE: A MATLAB toolbox
+          to compare established and novel estimators of the multivariate
+          transfer entropy. PLoS ONE 9(10): e109462.
+          https://doi.org/10.1371/journal.pone.0109462
+        - Baccala, L.A. & Sameshima, K. (2001). Partial directed coherence: a
+          new concept in neural structure determination. Biol Cybern 84:
+          463–474. https://doi.org/10.1007/PL00007990
+
         Args:
             n_samples : int
                 number of samples simulated for each process and replication
@@ -1115,7 +1124,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/estimator.html b/docs/html/_modules/idtxl/estimator.html index 3ab7bd6c..8023a685 100644 --- a/docs/html/_modules/idtxl/estimator.html +++ b/docs/html/_modules/idtxl/estimator.html @@ -13,7 +13,6 @@ - @@ -416,7 +415,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/estimators_jidt.html b/docs/html/_modules/idtxl/estimators_jidt.html index b7696e70..122d105b 100644 --- a/docs/html/_modules/idtxl/estimators_jidt.html +++ b/docs/html/_modules/idtxl/estimators_jidt.html @@ -13,7 +13,6 @@ - @@ -1851,7 +1850,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/estimators_opencl.html b/docs/html/_modules/idtxl/estimators_opencl.html index 1b7a3f29..2e76e0f5 100644 --- a/docs/html/_modules/idtxl/estimators_opencl.html +++ b/docs/html/_modules/idtxl/estimators_opencl.html @@ -13,7 +13,6 @@ - @@ -149,6 +148,10 @@

Source code for idtxl.estimators_opencl

             raise RuntimeError('No OpenCL GPU device found.')
         my_gpu_devices = platform.get_devices(device_type=cl.device_type.GPU)
         context = cl.Context(devices=my_gpu_devices)
+        if gpuid > len(my_gpu_devices)-1:
+            raise RuntimeError(
+                'No device with gpuid {0} (available device IDs: {1}).'.format(
+                    gpuid, np.arange(len(my_gpu_devices))))
         queue = cl.CommandQueue(context, my_gpu_devices[gpuid])
         if self.settings['debug']:
             print("Selected Device: ", my_gpu_devices[gpuid].name)
@@ -814,7 +817,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/estimators_pid.html b/docs/html/_modules/idtxl/estimators_pid.html index 1c638115..d54cd7d4 100644 --- a/docs/html/_modules/idtxl/estimators_pid.html +++ b/docs/html/_modules/idtxl/estimators_pid.html @@ -13,7 +13,6 @@ - @@ -51,7 +50,6 @@

Source code for idtxl.estimators_pid

 
 Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014). Quantifying
 Unique Information. Entropy, 16(4), 2161–2183. http://doi.org/10.3390/e16042161
-
 """
 import numpy as np
 from . import synergy_tartu
@@ -63,9 +61,9 @@ 

Source code for idtxl.estimators_pid

 
[docs]class SydneyPID(Estimator): """Estimate partial information decomposition of discrete variables. - Fast implementation of the partial information decomposition (PID) - estimator for discrete data. The estimator does not require JAVA or GPU - modules to run. + Fast implementation of the BROJA partial information decomposition (PID) + estimator for discrete data (Bertschinger, 2014). The estimator does not + require JAVA or GPU modules to run. The estimator finds shared information, unique information and synergistic information between the two inputs s1 and s2 with respect to @@ -80,6 +78,12 @@

Source code for idtxl.estimators_pid

     CMI decreases; and an outer loop which decreases the size of the
     probability mass increment the virtualised swapping utilises.
 
+    References
+
+    - Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014).
+      Quantifying unique information. Entropy, 16(4), 2161–2183.
+      http://doi.org/10.3390/e16042161
+
     Args:
         settings : dict
             estimation parameters
@@ -701,7 +705,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/idtxl_exceptions.html b/docs/html/_modules/idtxl/idtxl_exceptions.html index f153ab9d..26f76dbb 100644 --- a/docs/html/_modules/idtxl/idtxl_exceptions.html +++ b/docs/html/_modules/idtxl/idtxl_exceptions.html @@ -13,7 +13,6 @@ - @@ -121,7 +120,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/idtxl_io.html b/docs/html/_modules/idtxl/idtxl_io.html index a536042a..47573b92 100644 --- a/docs/html/_modules/idtxl/idtxl_io.html +++ b/docs/html/_modules/idtxl/idtxl_io.html @@ -13,7 +13,6 @@ - @@ -52,6 +51,7 @@

Source code for idtxl.idtxl_io

 # import json
 import pickle
 import h5py
+import networkx as nx
 import numpy as np
 import copy as cp
 import itertools as it
@@ -421,7 +421,7 @@ 

Source code for idtxl.idtxl_io

     available (see documentation of method get_adjacency_matrix for details).
 
     Args:
-        adjacency_matrix : 2D numpy array
+        adjacency_matrix : AdjacencyMatrix instances
             adjacency matrix to be exported, returned by get_adjacency_matrix()
             method of Results() class
         weights : str
@@ -435,9 +435,9 @@ 

Source code for idtxl.idtxl_io

     """
     # use 'weights' parameter (string) as networkx edge property name and use
     # adjacency matrix entries as edge property values
-    custom_type = [(weights, type(adjacency_matrix[0, 0]))]
-    custom_npmatrix = np.matrix(adjacency_matrix, dtype=custom_type)
-    return nx.from_numpy_matrix(custom_npmatrix, create_using=nx.DiGraph())
+ G = nx.DiGraph() + G.add_weighted_edges_from(adjacency_matrix.get_edge_list(), weights) + return G
[docs]def export_networkx_source_graph(results, target, sign_sources=True, fdr=True): @@ -456,7 +456,7 @@

Source code for idtxl.idtxl_io

         target : int
             target index
         sign_sources : bool [optional]
-            add only sources with significant information contribution
+            add sources with significant information contribution only
             (default=True)
         fdr : bool [optional]
             return FDR-corrected results (default=True)
@@ -540,7 +540,7 @@ 

Source code for idtxl.idtxl_io

       https://doi.org/10.1371/journal.pone.0068910
 
     Args:
-        adjacency_matrix : 2D numpy array
+        adjacency_matrix : AdjacencyMatrix instance
             adjacency matrix to be exported, returned by get_adjacency_matrix()
             method of Results() class
         mni_coord : numpy array
@@ -562,15 +562,13 @@ 

Source code for idtxl.idtxl_io

     """
     # Check input and get default settings for plotting. The default for
     # node labels is a list of '-' (no labels).
-    n_nodes = adjacency_matrix.shape[0]
-    n_edges = np.sum(adjacency_matrix > 0)
+    n_nodes = adjacency_matrix.n_nodes()
+    n_edges = adjacency_matrix.n_edges()
     labels = kwargs.get('labels', ['-' for i in range(n_nodes)])
     node_color = kwargs.get('node_color', np.ones(n_nodes))
     node_size = kwargs.get('node_size', np.ones(n_nodes))
     if n_edges == 0:
         Warning('No edges in results file. Nothing to plot.')
-    assert adjacency_matrix.shape[0] == adjacency_matrix.shape[1], (
-        'Adjacency matrix must be quadratic.')
     assert mni_coord.shape[0] == n_nodes and mni_coord.shape[1] == 3, (
         'MNI coordinates must have shape [n_nodes, 3].')
     assert len(labels) == n_nodes, (
@@ -597,7 +595,7 @@ 

Source code for idtxl.idtxl_io

     with open('{0}.edge'.format(file_name), 'w') as text_file:
         for i in range(n_nodes):
             for j in range(n_nodes):
-                print('{0}\t'.format(adjacency_matrix[i, j]),
+                print('{0}\t'.format(adjacency_matrix._edge_matrix[i, j]),
                       file=text_file, end='')
             print('', file=text_file)
@@ -638,7 +636,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/idtxl_utils.html b/docs/html/_modules/idtxl/idtxl_utils.html index bbfbf5f7..528e42e8 100644 --- a/docs/html/_modules/idtxl/idtxl_utils.html +++ b/docs/html/_modules/idtxl/idtxl_utils.html @@ -13,7 +13,6 @@ - @@ -399,7 +398,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/multivariate_mi.html b/docs/html/_modules/idtxl/multivariate_mi.html index fcdb30ad..3029dfdd 100644 --- a/docs/html/_modules/idtxl/multivariate_mi.html +++ b/docs/html/_modules/idtxl/multivariate_mi.html @@ -13,7 +13,6 @@ - @@ -387,7 +386,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/multivariate_te.html b/docs/html/_modules/idtxl/multivariate_te.html index 82aabf1b..4094d2b7 100644 --- a/docs/html/_modules/idtxl/multivariate_te.html +++ b/docs/html/_modules/idtxl/multivariate_te.html @@ -13,7 +13,6 @@ - @@ -392,7 +391,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/network_analysis.html b/docs/html/_modules/idtxl/network_analysis.html index 90050068..4d054693 100644 --- a/docs/html/_modules/idtxl/network_analysis.html +++ b/docs/html/_modules/idtxl/network_analysis.html @@ -13,7 +13,6 @@ - @@ -349,7 +348,8 @@

Source code for idtxl.network_analysis

             cond = self.settings['add_conditionals']
             if type(cond) is tuple:  # easily add single variable
                 cond = [cond]
-            candidate_set = list(set(candidate_set).difference(set(cond)))
+            cond_idx = self._lag_to_idx(cond)            
+            candidate_set = list(set(candidate_set).difference(set(cond_idx)))
         return candidate_set
 
     def _append_selected_vars_idx(self, idx):
@@ -583,7 +583,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/network_comparison.html b/docs/html/_modules/idtxl/network_comparison.html index ba9bbecd..d10184a7 100644 --- a/docs/html/_modules/idtxl/network_comparison.html +++ b/docs/html/_modules/idtxl/network_comparison.html @@ -13,7 +13,6 @@ - @@ -175,8 +174,8 @@

Source code for idtxl.network_comparison

             settings=self.settings,
             union_network=self.union,
             results={
-                'cmi_diff_abs': {link_a[1]: [np.abs(self.cmi_diff)],
-                                 link_b[1]: [np.abs(self.cmi_diff)]},
+                'cmi_diff_abs': {link_a[1]: np.abs(self.cmi_diff),
+                                 link_b[1]: np.abs(self.cmi_diff)},
                 'a>b': {link_a[1]: [te_a > te_b], link_b[1]: [te_a > te_b]},
                 'pval': {link_a[1]: [pvalue], link_b[1]: [pvalue]},
                 'cmi_surr': self.cmi_surr,
@@ -1063,7 +1062,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/network_inference.html b/docs/html/_modules/idtxl/network_inference.html index e24fa783..0f8b1d93 100644 --- a/docs/html/_modules/idtxl/network_inference.html +++ b/docs/html/_modules/idtxl/network_inference.html @@ -13,7 +13,6 @@ - @@ -279,8 +278,8 @@

Source code for idtxl.network_inference

                 self.settings['max_lag_sources'] < 0):
             raise RuntimeError('max_lag_sources has to be an integer >= 0.')
         if (type(self.settings['tau_sources']) is not int or
-                self.settings['tau_sources'] < 1):
-            raise RuntimeError('tau_sources must be an integer > 0.')
+                self.settings['tau_sources'] < 0):
+            raise RuntimeError('tau_sources must be an integer >= 0.')
         if self.settings['min_lag_sources'] > self.settings['max_lag_sources']:
             raise RuntimeError('min_lag_sources ({0}) must be smaller or equal'
                                ' to max_lag_sources ({1}).'.format(
@@ -378,7 +377,7 @@ 

Source code for idtxl.network_inference

                                '(''max_lag_sources'') needs to be specified.')
         if 'min_lag_sources' not in self.settings:
             raise RuntimeError('The minimum lag for source embedding '
-                               '(''max_lag_sources'') needs to be specified.')
+                               '(''min_lag_sources'') needs to be specified.')
         self.settings.setdefault('max_lag_target', settings['max_lag_sources'])
 
         if (type(self.settings['min_lag_sources']) is not int or
@@ -391,8 +390,8 @@ 

Source code for idtxl.network_inference

                 self.settings['max_lag_target'] <= 0):
             raise RuntimeError('max_lag_target must be an integer > 0.')
         if (type(self.settings['tau_sources']) is not int or
-                self.settings['tau_sources'] < 1):
-            raise RuntimeError('tau_sources must be an integer > 0.')
+                self.settings['tau_sources'] < 0):
+            raise RuntimeError('tau_sources must be an integer >= 0.')
         if (type(self.settings['tau_target']) is not int or
                 self.settings['tau_target'] < 1):
             raise RuntimeError('tau_sources must be an integer > 0.')
@@ -572,7 +571,7 @@ 

Source code for idtxl.network_inference

                     # For now we don't need a stack trace:
                     # traceback.print_tb(aee.__traceback__)
                     break
-                    
+
                 # Test max CMI for significance with maximum statistics.
                 te_max_candidate = max(temp_te)
                 max_candidate = candidate_set[np.argmax(temp_te)]
@@ -720,7 +719,7 @@ 

Source code for idtxl.network_inference

                     # For now we don't need a stack trace:
                     # traceback.print_tb(aee.__traceback__)
                     break
-                
+
                 # Find variable with minimum MI/TE. Test min TE/MI for
                 # significance with minimum statistics. Build conditioning set
                 # for minimum statistics by removing the minimum candidate.
@@ -759,7 +758,7 @@ 

Source code for idtxl.network_inference

                     # For now we don't need a stack trace:
                     # traceback.print_tb(aee.__traceback__)
                     break
-                
+
                 # Remove the minimum it is not significant and test the next
                 # min. candidate. If the minimum is significant, break. All
                 # other sources will be significant as well (b/c they have
@@ -1105,7 +1104,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/partial_information_decomposition.html b/docs/html/_modules/idtxl/partial_information_decomposition.html index ee39baf8..83ad622e 100644 --- a/docs/html/_modules/idtxl/partial_information_decomposition.html +++ b/docs/html/_modules/idtxl/partial_information_decomposition.html @@ -13,7 +13,6 @@ - @@ -389,7 +388,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/results.html b/docs/html/_modules/idtxl/results.html index 576c8d6c..9bae6705 100644 --- a/docs/html/_modules/idtxl/results.html +++ b/docs/html/_modules/idtxl/results.html @@ -13,7 +13,6 @@ - @@ -45,10 +44,15 @@

Navigation

Source code for idtxl.results

 """Provide results class for IDTxl network analysis."""
+import sys
+import warnings
 import copy as cp
 import numpy as np
 from . import idtxl_utils as utils
 
+warnings.simplefilter(action='ignore', category=FutureWarning)
+MIN_INT = -sys.maxsize - 1  # minimum integer for initializing adj. matrix
+
 
 
[docs]class DotDict(dict): """Dictionary with dot-notation access to values. @@ -95,6 +99,70 @@

Source code for idtxl.results

         # self.__dict__ = self
 
 
+
[docs]class AdjacencyMatrix(): + """Adjacency matrix representing inferred networks.""" + def __init__(self, n_nodes, weight_type): + self._edge_matrix = np.zeros((n_nodes, n_nodes), dtype=bool) + self._weight_matrix = np.zeros((n_nodes, n_nodes), dtype=weight_type) + if np.issubdtype(weight_type, np.integer): + self._weight_type = np.integer + elif np.issubdtype(weight_type, np.float): + self._weight_type = np.float + elif weight_type is bool: + self._weight_type = weight_type + else: + raise RuntimeError('Unknown weight data type {0}.'.format( + weight_type)) + +
[docs] def n_nodes(self): + """Return number of nodes.""" + return self._edge_matrix.shape[0]
+ +
[docs] def n_edges(self): + return self._edge_matrix.sum()
+ +
[docs] def add_edge(self, i, j, weight): + """Add weighted edge (i, j) to adjacency matrix.""" + if not np.issubdtype(type(weight), self._weight_type): + raise TypeError( + 'Can not add weight of type {0} to adjacency matrix of type ' + '{1}.'.format(type(weight), self._weight_type)) + self._edge_matrix[i, j] = True + self._weight_matrix[i, j] = weight
+ +
[docs] def add_edge_list(self, i_list, j_list, weights): + """Add multiple weighted edges (i, j) to adjacency matrix.""" + if len(i_list) != len(j_list): + raise RuntimeError( + 'Lists with edge indices must be of same length.') + if len(i_list) != len(weights): + raise RuntimeError( + 'Edge weights must have same length as edge indices.') + for i, j, weight in zip(i_list, j_list, weights): + self.add_edge(i, j, weight)
+ +
[docs] def print_matrix(self): + """Print weight and edge matrix.""" + print(self._edge_matrix) + print(self._weight_matrix)
+ +
[docs] def get_edge_list(self): + """Return list of weighted edges. + + Returns + list of tuples + each entry represents one edge in the graph: (i, j, weight) + """ + edge_list = np.zeros(self.n_edges(), dtype=object) # list of tuples + ind = 0 + for i in range(self.n_nodes()): + for j in range(self.n_nodes()): + if self._edge_matrix[i, j]: + edge_list[ind] = (i, j, self._weight_matrix[i, j]) + ind += 1 + return edge_list
+ +
[docs]class Results(): """Parent class for results of network analysis algorithms. @@ -127,19 +195,15 @@

Source code for idtxl.results

 
     def _print_edge_list(self, adjacency_matrix, weights):
         """Print edge list to console."""
-        link_found = False
-        for s in range(self.data_properties.n_nodes):
-            for t in range(self.data_properties.n_nodes):
-                if adjacency_matrix[s, t]:
-                    link_found = True
-                    if weights == 'binary':
-                        print('\t{0} -> {1}'.format(
-                            s, t, weights, adjacency_matrix[s, t]))
-                    else:
-                        print('\t{0} -> {1}, {2}: {3}'.format(
-                            s, t, weights, adjacency_matrix[s, t]))
-
-        if not link_found:
+        edge_list = adjacency_matrix.get_edge_list()
+        if edge_list.size > 0:
+            for e in edge_list:
+                if weights == 'binary':
+                    print('\t{0} -> {1}'.format(e[0], e[1]))
+                else:
+                    print('\t{0} -> {1}, {2}: {3}'.format(
+                        e[0], e[1], weights, e[2]))
+        else:
             print('No significant links found in the network.')
 
     def _check_result(self, process, settings):
@@ -229,12 +293,12 @@ 

Source code for idtxl.results

     e.g., estimation of active information storage.
 
     Note that for convenience all dictionaries in this class can additionally
-    be accessed using dot-notation: 
+    be accessed using dot-notation:
 
     >>> res_network.settings.cmi_estimator
-    
-    or 
-    
+
+    or
+
     >>> res_network.settings['cmi_estimator'].
 
     Attributes:
@@ -482,11 +546,11 @@ 

Source code for idtxl.results

     MultivariateTE or Bivariate TE.
 
     Note that for convenience all dictionaries in this class can additionally
-    be accessed using dot-notation: 
-    
+    be accessed using dot-notation:
+
     >>> res_network.settings.cmi_estimator
-    
-    or 
+
+    or
 
     >>> res_network.settings['cmi_estimator'].
 
@@ -618,10 +682,11 @@ 

Source code for idtxl.results

 
             fdr : bool [optional]
                 return FDR-corrected results (default=True)
+
+        Returns:
+            AdjacencyMatrix instance
         """
-        adjacency_matrix = np.zeros(
-            (self.data_properties.n_nodes, self.data_properties.n_nodes),
-            dtype=int)
+        adjacency_matrix = AdjacencyMatrix(self.data_properties.n_nodes, int)
 
         if weights == 'max_te_lag':
             for t in self.targets_analysed:
@@ -629,26 +694,38 @@ 

Source code for idtxl.results

                 delays = self.get_target_delays(target=t,
                                                 criterion='max_te',
                                                 fdr=fdr)
-                if sources.size:
-                    adjacency_matrix[sources, t] = delays
+                adjacency_matrix.add_edge_list(
+                    sources, np.ones(len(sources), dtype=int) * t, delays)
         elif weights == 'max_p_lag':
             for t in self.targets_analysed:
                 sources = self.get_target_sources(target=t, fdr=fdr)
                 delays = self.get_target_delays(target=t,
                                                 criterion='max_p',
                                                 fdr=fdr)
-                if sources.size:
-                    adjacency_matrix[sources, t] = delays
+                adjacency_matrix.add_edge_list(
+                    sources, np.ones(len(sources), dtype=int) * t, delays)
         elif weights == 'vars_count':
             for t in self.targets_analysed:
                 single_result = self.get_single_target(target=t, fdr=fdr)
-                for s in single_result.selected_vars_sources:
-                    adjacency_matrix[s[0], t] += 1
+                sources = np.zeros(len(single_result.selected_vars_sources))
+                weights = np.zeros(len(single_result.selected_vars_sources))
+                for i, s in enumerate(single_result.selected_vars_sources):
+                    sources[i] = s[0]
+                    weights[i] += 1
+                adjacency_matrix.add_edge_list(
+                    sources, np.ones(len(sources), dtype=int) * t, weights)
         elif weights == 'binary':
             for t in self.targets_analysed:
                 single_result = self.get_single_target(target=t, fdr=fdr)
-                for s in single_result.selected_vars_sources:
-                    adjacency_matrix[s[0], t] = 1
+                sources = np.zeros(
+                    len(single_result.selected_vars_sources), dtype=int)
+                weights = np.zeros(
+                    len(single_result.selected_vars_sources), dtype=int)
+                for i, s in enumerate(single_result.selected_vars_sources):
+                    sources[i] = s[0]
+                    weights[i] = 1
+                adjacency_matrix.add_edge_list(
+                    sources, np.ones(len(sources), dtype=int) * t, weights)
         else:
             raise RuntimeError('Invalid weights value')
         return adjacency_matrix
@@ -688,12 +765,12 @@

Source code for idtxl.results

     algorithms.
 
     Note that for convenience all dictionaries in this class can additionally
-    be accessed using dot-notation: 
-    
+    be accessed using dot-notation:
+
     >>> res_pid._single_target[2].source_1
-    
-    or 
-    
+
+    or
+
     >>> res_pid._single_target[2].['source_1'].
 
     Attributes:
@@ -833,43 +910,43 @@ 

Source code for idtxl.results

                    connectivity for significant links
                 - 'diff_abs': absolute difference
 
+        Returns:
+            AdjacencyMatrix instance
         """
         # Note: right now, the network comparison work on the uncorrected
         # networks only. This may have to change in the future, in which case
         # the value for 'fdr' when accessing single target results or adjacency
         # matrices has to be taken from the analysis settings.
         if weights == 'comparison':
-            adjacency_matrix = np.zeros(
-                (self.data_properties.n_nodes, self.data_properties.n_nodes),
-                dtype=bool)
+            adjacency_matrix = AdjacencyMatrix(
+                self.data_properties.n_nodes, int)
             for t in self.targets_analysed:
                 sources = self.get_target_sources(t)
-                for (i, s) in enumerate(sources):
-                        adjacency_matrix[s, t] = self.ab[t][i]
+                for i, s in enumerate(sources):
+                    adjacency_matrix.add_edge(s, t, int(self.ab[t][i]))
         elif weights == 'union':
-            adjacency_matrix = np.zeros(
-                (self.data_properties.n_nodes, self.data_properties.n_nodes),
-                dtype=int)
+            adjacency_matrix = AdjacencyMatrix(
+                self.data_properties.n_nodes, int)
             for t in self.targets_analysed:
                 sources = self.get_target_sources(t)
-                if sources.size:
-                    adjacency_matrix[sources, t] = 1
+                adjacency_matrix.add_edge_list(
+                    sources, np.ones(len(sources), dtype=int) * t,
+                    np.ones(len(sources), dtype=int))
         elif weights == 'diff_abs':
-            adjacency_matrix = np.zeros(
-                (self.data_properties.n_nodes, self.data_properties.n_nodes),
-                dtype=float)
+            adjacency_matrix = AdjacencyMatrix(
+                self.data_properties.n_nodes, float)
             for t in self.targets_analysed:
                 sources = self.get_target_sources(t)
                 for (i, s) in enumerate(sources):
-                    adjacency_matrix[s, t] = self.cmi_diff_abs[t][i]
+                    print(self.cmi_diff_abs)
+                    adjacency_matrix.add_edge(s, t, self.cmi_diff_abs[t][i])
         elif weights == 'pvalue':
-            adjacency_matrix = np.ones(
-                (self.data_properties.n_nodes, self.data_properties.n_nodes),
-                dtype=float)
+            adjacency_matrix = AdjacencyMatrix(
+                self.data_properties.n_nodes, float)
             for t in self.targets_analysed:
                 sources = self.get_target_sources(t)
                 for (i, s) in enumerate(sources):
-                    adjacency_matrix[s, t] = self.pval[t][i]
+                    adjacency_matrix.add_edge(s, t, self.pval[t][i])
         else:
             raise RuntimeError('Invalid weights value')
 
@@ -973,7 +1050,7 @@ 

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/single_process_analysis.html b/docs/html/_modules/idtxl/single_process_analysis.html index 162f6655..5fb7a0d4 100644 --- a/docs/html/_modules/idtxl/single_process_analysis.html +++ b/docs/html/_modules/idtxl/single_process_analysis.html @@ -13,7 +13,6 @@ - @@ -89,7 +88,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/stats.html b/docs/html/_modules/idtxl/stats.html index d4a9f826..952839a6 100644 --- a/docs/html/_modules/idtxl/stats.html +++ b/docs/html/_modules/idtxl/stats.html @@ -13,7 +13,6 @@ - @@ -1660,7 +1659,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/synergy_tartu.html b/docs/html/_modules/idtxl/synergy_tartu.html index d9e9fcb0..0cfefc85 100644 --- a/docs/html/_modules/idtxl/synergy_tartu.html +++ b/docs/html/_modules/idtxl/synergy_tartu.html @@ -13,7 +13,6 @@ - @@ -93,9 +92,6 @@

Source code for idtxl.synergy_tartu

 
[docs]def q_vidx(i): return 3*i+2
-
[docs]class BROJA_2PID_Exception(Exception): - pass
-
[docs]class Solve_w_ECOS: # (c) Abdullah Makkeh, Dirk Oliver Theis @@ -630,7 +626,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/idtxl/visualise_graph.html b/docs/html/_modules/idtxl/visualise_graph.html index bf7d3dc7..beb3eea4 100644 --- a/docs/html/_modules/idtxl/visualise_graph.html +++ b/docs/html/_modules/idtxl/visualise_graph.html @@ -13,7 +13,6 @@ - @@ -132,7 +131,7 @@

Source code for idtxl.visualise_graph

         target : int
             index of target process
         sign_sources : bool [optional]
-            add only sources significant information contribution
+            plot sources with significant information contribution only
             (default=True)
         display_edge_labels : bool [optional]
             display TE value on edge lables (default=False)
@@ -213,13 +212,16 @@ 

Source code for idtxl.visualise_graph

     # https://stackoverflow.com/questions/25500541/
     # matplotlib-bwr-colormap-always-centered-on-zero
     if diverging:
-        max_val = np.max(abs(adj_matrix))
+        max_val = np.max(abs(adj_matrix._weight_matrix))
         min_val = -max_val
     else:
-        max_val = np.max(adj_matrix)
-        min_val = -np.min(adj_matrix)
-    plt.imshow(adj_matrix, cmap=mat_color, interpolation='nearest',
-               vmin=min_val, vmax=max_val)
+        max_val = np.max(adj_matrix._weight_matrix)
+        min_val = -np.min(adj_matrix._weight_matrix)
+
+    adj_matrix_masked = np.ma.masked_where(
+        np.invert(adj_matrix._edge_matrix), adj_matrix._weight_matrix)
+    plt.imshow(adj_matrix_masked, cmap=mat_color,
+               interpolation='nearest', vmin=min_val, vmax=max_val)
 
     # Set the colorbar and make colorbar match the image in size using the
     # fraction and pad parameters (see https://stackoverflow.com/a/26720422).
@@ -233,7 +235,8 @@ 

Source code for idtxl.visualise_graph

     elif cbar_label == 'binary':
         cbar_label = 'Binary adjacency matrix'
     elif cbar_label == 'p-value':
-        cbar_ticks = np.arange(0, 1.001, 0.1)
+        # cbar_ticks = np.arange(0, 1.001, 0.1)
+        cbar_ticks = np.arange(0, max_val * 1.01, max_val / 5)
     else:
         cbar_ticks = np.arange(min_val, max_val + 0.01 * max_val,
                                cbar_stepsize)
@@ -241,8 +244,8 @@ 

Source code for idtxl.visualise_graph

     cbar.set_label(cbar_label, rotation=90)
 
     # Set x- and y-ticks.
-    plt.xticks(np.arange(adj_matrix.shape[1]))
-    plt.yticks(np.arange(adj_matrix.shape[0]))
+    plt.xticks(np.arange(adj_matrix.n_nodes()))
+    plt.yticks(np.arange(adj_matrix.n_nodes()))
     ax = plt.gca()
     ax.xaxis.tick_top()
     return cbar
@@ -326,19 +329,22 @@ 

Source code for idtxl.visualise_graph

         cbar_label = 'A != B'
     elif results.settings.tail_comp == 'one':
         cbar_label = 'A > B'
-    _plot_adj_matrix(results.get_adjacency_matrix('comparison').astype(int),
+    adj_matrix_comparison = results.get_adjacency_matrix('comparison')
+    _plot_adj_matrix(adj_matrix_comparison,
                      mat_color='OrRd', cbar_label=cbar_label, cbar_stepsize=1)
     ax.set_title('Comparison {0}'.format(cbar_label), y=1.1)
 
     ax = plt.subplot(235)  # plot abs. differences adjacency matrix
-    _plot_adj_matrix(results.get_adjacency_matrix('diff_abs'),
+    adj_matrix_diff = results.get_adjacency_matrix('diff_abs')
+    _plot_adj_matrix(adj_matrix_diff,
                      mat_color='BuGn', cbar_label='norm. CMI diff [a.u.]',
                      cbar_stepsize=0.1)
     ax.set_title('CMI diff abs (A - B)', y=1.1)
 
-    ax = plt.subplot(236) # plot p-value adjacency matrix
-    _plot_adj_matrix(results.get_adjacency_matrix('pvalue'), mat_color='gray',
-                     cbar_label='p-value', cbar_stepsize=0.05)
+    ax = plt.subplot(236)  # plot p-value adjacency matrix
+    adj_matrix_pval = results.get_adjacency_matrix('pvalue')
+    _plot_adj_matrix(adj_matrix_pval, mat_color='Greys',
+                     cbar_label='p-value')
     ax.set_title('p-value [%]', y=1.1)
     return graph_union, fig
@@ -379,7 +385,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/_modules/index.html b/docs/html/_modules/index.html index 43109b78..b479aa95 100644 --- a/docs/html/_modules/index.html +++ b/docs/html/_modules/index.html @@ -13,7 +13,6 @@ - @@ -102,7 +101,7 @@

Navigation

\ No newline at end of file diff --git a/docs/html/genindex.html b/docs/html/genindex.html index 064aeaa2..2ac27951 100644 --- a/docs/html/genindex.html +++ b/docs/html/genindex.html @@ -14,7 +14,6 @@ - @@ -72,6 +71,12 @@

A

@@ -295,6 +300,8 @@

G

    +
  • get_edge_list() (idtxl.results.AdjacencyMatrix method) +
  • get_realisations() (idtxl.data.Data method)
  • get_significant_processes() (idtxl.results.ResultsSingleProcessAnalysis method) @@ -495,6 +502,10 @@

    M

    N

    - +
    +
  • print_matrix() (idtxl.results.AdjacencyMatrix method) +
  • processes_analysed (idtxl.results.ResultsSingleProcessAnalysis attribute)
  • provide_marginals() (idtxl.synergy_tartu.Solve_w_ECOS method) @@ -709,7 +722,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl.html b/docs/html/idtxl.html index d776e29c..f34eed53 100644 --- a/docs/html/idtxl.html +++ b/docs/html/idtxl.html @@ -13,7 +13,6 @@ - @@ -831,14 +830,24 @@

    idtxl package +
  • Montalto, A., Faes, L., & Marinazzo, D. (2014) MuTE: A MATLAB toolbox +to compare established and novel estimators of the multivariate +transfer entropy. PLoS ONE 9(10): e109462. +https://doi.org/10.1371/journal.pone.0109462
  • +
  • Baccala, L.A. & Sameshima, K. (2001). Partial directed coherence: a +new concept in neural structure determination. Biol Cybern 84: +463–474. https://doi.org/10.1007/PL00007990
  • +
    Args:
    @@ -3331,9 +3340,9 @@

    idtxl packageclass idtxl.estimators_pid.SydneyPID(settings)[source]

    Bases: idtxl.estimator.Estimator

    Estimate partial information decomposition of discrete variables.

    -

    Fast implementation of the partial information decomposition (PID) -estimator for discrete data. The estimator does not require JAVA or GPU -modules to run.

    +

    Fast implementation of the BROJA partial information decomposition (PID) +estimator for discrete data (Bertschinger, 2014). The estimator does not +require JAVA or GPU modules to run.

    The estimator finds shared information, unique information and synergistic information between the two inputs s1 and s2 with respect to the output t.

    @@ -3345,6 +3354,12 @@

    idtxl package +
  • Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014). +Quantifying unique information. Entropy, 16(4), 2161–2183. +http://doi.org/10.3390/e16042161
  • +
    Args:
    @@ -3584,7 +3599,7 @@

    idtxl package
    Args:
    -
    adjacency_matrix : 2D numpy array
    +
    adjacency_matrix : AdjacencyMatrix instance
    adjacency matrix to be exported, returned by get_adjacency_matrix() method of Results() class
    mni_coord : numpy array
    @@ -3619,7 +3634,7 @@

    idtxl package
    Args:
    -
    adjacency_matrix : 2D numpy array
    +
    adjacency_matrix : AdjacencyMatrix instances
    adjacency matrix to be exported, returned by get_adjacency_matrix() method of Results() class
    weights : str
    @@ -3652,7 +3667,7 @@

    idtxl package: int
    target index
    sign_sources : bool [optional]
    -
    add only sources with significant information contribution +
    add sources with significant information contribution only (default=True)
    fdr : bool [optional]
    return FDR-corrected results (default=True)
    @@ -4997,6 +5012,56 @@

    idtxl package

    idtxl.results module

    Provide results class for IDTxl network analysis.

    +
    +
    +class idtxl.results.AdjacencyMatrix(n_nodes, weight_type)[source]
    +

    Bases: object

    +

    Adjacency matrix representing inferred networks.

    +
    +
    +add_edge(i, j, weight)[source]
    +

    Add weighted edge (i, j) to adjacency matrix.

    +
    + +
    +
    +add_edge_list(i_list, j_list, weights)[source]
    +

    Add multiple weighted edges (i, j) to adjacency matrix.

    +
    + +
    +
    +get_edge_list()[source]
    +

    Return list of weighted edges.

    +
    +
    Returns
    +
    +
    list of tuples
    +
    each entry represents one edge in the graph: (i, j, weight)
    +
    +
    +
    +
    + +
    +
    +n_edges()[source]
    +
    + +
    +
    +n_nodes()[source]
    +

    Return number of nodes.

    +
    + +
    +
    +print_matrix()[source]
    +

    Print weight and edge matrix.

    +
    + +
    +
    class idtxl.results.DotDict[source]
    @@ -5239,6 +5304,8 @@

    idtxl package

    idtxl.synergy_tartu module

    -
    -
    -exception idtxl.synergy_tartu.BROJA_2PID_Exception[source]
    -

    Bases: Exception

    -
    -
    idtxl.synergy_tartu.I_X_Y(p)[source]
    @@ -6466,7 +6529,7 @@

    idtxl package: int
    index of target process
    sign_sources : bool [optional]
    -
    add only sources significant information contribution +
    plot sources with significant information contribution only (default=True)
    display_edge_labels : bool [optional]
    display TE value on edge lables (default=False)
    @@ -6598,7 +6661,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_data_class.html b/docs/html/idtxl_data_class.html index de68eedf..7890e057 100644 --- a/docs/html/idtxl_data_class.html +++ b/docs/html/idtxl_data_class.html @@ -13,7 +13,6 @@ - @@ -153,14 +152,24 @@

    The Data Class +
  • Montalto, A., Faes, L., & Marinazzo, D. (2014) MuTE: A MATLAB toolbox +to compare established and novel estimators of the multivariate +transfer entropy. PLoS ONE 9(10): e109462. +https://doi.org/10.1371/journal.pone.0109462
  • +
  • Baccala, L.A. & Sameshima, K. (2001). Partial directed coherence: a +new concept in neural structure determination. Biol Cybern 84: +463–474. https://doi.org/10.1007/PL00007990
  • +
    Args:
    @@ -953,7 +962,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_estimators.html b/docs/html/idtxl_estimators.html index 8e8df232..33207c3f 100644 --- a/docs/html/idtxl_estimators.html +++ b/docs/html/idtxl_estimators.html @@ -13,7 +13,6 @@ - @@ -1623,9 +1622,9 @@

    PID Estimatorsclass idtxl.estimators_pid.SydneyPID(settings)[source]

    Estimate partial information decomposition of discrete variables.

    -

    Fast implementation of the partial information decomposition (PID) -estimator for discrete data. The estimator does not require JAVA or GPU -modules to run.

    +

    Fast implementation of the BROJA partial information decomposition (PID) +estimator for discrete data (Bertschinger, 2014). The estimator does not +require JAVA or GPU modules to run.

    The estimator finds shared information, unique information and synergistic information between the two inputs s1 and s2 with respect to the output t.

    @@ -1637,6 +1636,12 @@

    PID Estimators +
  • Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014). +Quantifying unique information. Entropy, 16(4), 2161–2183. +http://doi.org/10.3390/e16042161
  • +
    Args:
    @@ -1877,7 +1882,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_helper.html b/docs/html/idtxl_helper.html index 49198360..2d007d8f 100644 --- a/docs/html/idtxl_helper.html +++ b/docs/html/idtxl_helper.html @@ -13,7 +13,6 @@ - @@ -873,7 +872,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_network_comparison.html b/docs/html/idtxl_network_comparison.html index 219b6ed6..c36d7de3 100644 --- a/docs/html/idtxl_network_comparison.html +++ b/docs/html/idtxl_network_comparison.html @@ -13,7 +13,6 @@ - @@ -331,7 +330,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_network_inference.html b/docs/html/idtxl_network_inference.html index 2969c025..e5a1433e 100644 --- a/docs/html/idtxl_network_inference.html +++ b/docs/html/idtxl_network_inference.html @@ -13,7 +13,6 @@ - @@ -1060,7 +1059,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_process_analysis.html b/docs/html/idtxl_process_analysis.html index 44045245..5ce9d9e2 100644 --- a/docs/html/idtxl_process_analysis.html +++ b/docs/html/idtxl_process_analysis.html @@ -13,7 +13,6 @@ - @@ -467,7 +466,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/idtxl_results_class.html b/docs/html/idtxl_results_class.html index 8d9dedbc..3a2eb4d8 100644 --- a/docs/html/idtxl_results_class.html +++ b/docs/html/idtxl_results_class.html @@ -13,7 +13,6 @@ - @@ -139,6 +138,8 @@

    Results network inference © Copyright 2018, Patricia Wollstadt, Joseph T. Lizier, Raul Vicente, Conor Finn, Mario Martinez-Zarzuela, Pedro Mediano, Leonardo Novelli, Michael Wibral. - Created using Sphinx 1.8.1. + Created using Sphinx 1.8.2. \ No newline at end of file diff --git a/docs/html/index.html b/docs/html/index.html index 9c2789bb..7032df1f 100644 --- a/docs/html/index.html +++ b/docs/html/index.html @@ -13,7 +13,6 @@ - @@ -191,7 +190,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/objects.inv b/docs/html/objects.inv index 57636e75..97c8e3ab 100644 Binary files a/docs/html/objects.inv and b/docs/html/objects.inv differ diff --git a/docs/html/py-modindex.html b/docs/html/py-modindex.html index b6ec292c..204bc02e 100644 --- a/docs/html/py-modindex.html +++ b/docs/html/py-modindex.html @@ -13,7 +13,6 @@ - @@ -210,7 +209,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/search.html b/docs/html/search.html index 2f45f03e..a850bb03 100644 --- a/docs/html/search.html +++ b/docs/html/search.html @@ -14,7 +14,6 @@ - @@ -98,7 +97,7 @@

    Navigation

    \ No newline at end of file diff --git a/docs/html/searchindex.js b/docs/html/searchindex.js index 6a24bec9..3dcddd8c 100644 --- a/docs/html/searchindex.js +++ b/docs/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["idtxl","idtxl_data_class","idtxl_estimators","idtxl_helper","idtxl_network_comparison","idtxl_network_inference","idtxl_process_analysis","idtxl_results_class","index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":1,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:55},filenames:["idtxl.rst","idtxl_data_class.rst","idtxl_estimators.rst","idtxl_helper.rst","idtxl_network_comparison.rst","idtxl_network_inference.rst","idtxl_process_analysis.rst","idtxl_results_class.rst","index.rst"],objects:{"":{idtxl:[0,0,0,"-"]},"idtxl.active_information_storage":{ActiveInformationStorage:[0,1,1,""]},"idtxl.active_information_storage.ActiveInformationStorage":{analyse_network:[0,2,1,""],analyse_single_process:[0,2,1,""]},"idtxl.bivariate_mi":{BivariateMI:[0,1,1,""]},"idtxl.bivariate_mi.BivariateMI":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.bivariate_te":{BivariateTE:[0,1,1,""]},"idtxl.bivariate_te.BivariateTE":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.data":{Data:[0,1,1,""]},"idtxl.data.Data":{data:[0,3,1,""],generate_logistic_maps_data:[0,2,1,""],generate_mute_data:[0,2,1,""],generate_var_data:[0,2,1,""],get_realisations:[0,2,1,""],n_realisations:[0,2,1,""],n_realisations_repl:[0,2,1,""],n_realisations_samples:[0,2,1,""],permute_replications:[0,2,1,""],permute_samples:[0,2,1,""],set_data:[0,2,1,""],slice_permute_replications:[0,2,1,""],slice_permute_samples:[0,2,1,""]},"idtxl.estimator":{Estimator:[0,1,1,""],find_estimator:[0,4,1,""],list_estimators:[0,4,1,""]},"idtxl.estimator.Estimator":{estimate:[0,2,1,""],estimate_parallel:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_jidt":{JidtDiscrete:[0,1,1,""],JidtDiscreteAIS:[0,1,1,""],JidtDiscreteCMI:[0,1,1,""],JidtDiscreteMI:[0,1,1,""],JidtDiscreteTE:[0,1,1,""],JidtEstimator:[0,1,1,""],JidtGaussian:[0,1,1,""],JidtGaussianAIS:[0,1,1,""],JidtGaussianCMI:[0,1,1,""],JidtGaussianMI:[0,1,1,""],JidtGaussianTE:[0,1,1,""],JidtKraskov:[0,1,1,""],JidtKraskovAIS:[0,1,1,""],JidtKraskovCMI:[0,1,1,""],JidtKraskovMI:[0,1,1,""],JidtKraskovTE:[0,1,1,""],common_estimate_surrogates_analytic:[0,4,1,""]},"idtxl.estimators_jidt.JidtDiscrete":{estimate_surrogates_analytic:[0,2,1,""],get_analytic_distribution:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteAIS":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteCMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteTE":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtEstimator":{is_parallel:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussian":{estimate_surrogates_analytic:[0,2,1,""],get_analytic_distribution:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianAIS":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianCMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianTE":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskov":{is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovAIS":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovCMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovTE":{estimate:[0,2,1,""]},"idtxl.estimators_opencl":{OpenCLKraskov:[0,1,1,""],OpenCLKraskovCMI:[0,1,1,""],OpenCLKraskovMI:[0,1,1,""]},"idtxl.estimators_opencl.OpenCLKraskov":{is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_opencl.OpenCLKraskovCMI":{estimate:[0,2,1,""]},"idtxl.estimators_opencl.OpenCLKraskovMI":{estimate:[0,2,1,""]},"idtxl.estimators_pid":{SydneyPID:[0,1,1,""],TartuPID:[0,1,1,""]},"idtxl.estimators_pid.SydneyPID":{estimate:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_pid.TartuPID":{estimate:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.idtxl_exceptions":{AlgorithmExhaustedError:[0,5,1,""],BROJA_2PID_Exception:[0,5,1,""],JidtOutOfMemoryError:[0,5,1,""],package_missing:[0,4,1,""]},"idtxl.idtxl_io":{export_brain_net_viewer:[0,4,1,""],export_networkx_graph:[0,4,1,""],export_networkx_source_graph:[0,4,1,""],import_fieldtrip:[0,4,1,""],import_matarray:[0,4,1,""],load_pickle:[0,4,1,""],save_pickle:[0,4,1,""]},"idtxl.idtxl_utils":{argsort_descending:[0,4,1,""],autocorrelation:[0,4,1,""],calculate_mi:[0,4,1,""],combine_discrete_dimensions:[0,4,1,""],conflicting_entries:[0,4,1,""],discretise:[0,4,1,""],discretise_max_ent:[0,4,1,""],equal_dicts:[0,4,1,""],print_dict:[0,4,1,""],remove_column:[0,4,1,""],remove_row:[0,4,1,""],separate_arrays:[0,4,1,""],sort_descending:[0,4,1,""],standardise:[0,4,1,""],swap_chars:[0,4,1,""]},"idtxl.multivariate_mi":{MultivariateMI:[0,1,1,""]},"idtxl.multivariate_mi.MultivariateMI":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.multivariate_te":{MultivariateTE:[0,1,1,""]},"idtxl.multivariate_te.MultivariateTE":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.network_analysis":{NetworkAnalysis:[0,1,1,""]},"idtxl.network_analysis.NetworkAnalysis":{current_value:[0,3,1,""],selected_vars_full:[0,3,1,""],selected_vars_sources:[0,3,1,""],selected_vars_target:[0,3,1,""]},"idtxl.network_comparison":{NetworkComparison:[0,1,1,""]},"idtxl.network_comparison.NetworkComparison":{calculate_link_te:[0,2,1,""],compare_between:[0,2,1,""],compare_links_within:[0,2,1,""],compare_within:[0,2,1,""]},"idtxl.network_inference":{NetworkInference:[0,1,1,""],NetworkInferenceBivariate:[0,1,1,""],NetworkInferenceMI:[0,1,1,""],NetworkInferenceMultivariate:[0,1,1,""],NetworkInferenceTE:[0,1,1,""]},"idtxl.partial_information_decomposition":{PartialInformationDecomposition:[0,1,1,""]},"idtxl.partial_information_decomposition.PartialInformationDecomposition":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.results":{DotDict:[0,1,1,""],Results:[0,1,1,""],ResultsNetworkAnalysis:[0,1,1,""],ResultsNetworkComparison:[0,1,1,""],ResultsNetworkInference:[0,1,1,""],ResultsPartialInformationDecomposition:[0,1,1,""],ResultsSingleProcessAnalysis:[0,1,1,""]},"idtxl.results.Results":{combine_results:[0,2,1,""]},"idtxl.results.ResultsNetworkAnalysis":{get_single_target:[0,2,1,""],get_target_sources:[0,2,1,""],targets_analysed:[0,3,1,""]},"idtxl.results.ResultsNetworkComparison":{get_adjacency_matrix:[0,2,1,""],get_single_target:[0,2,1,""],get_target_sources:[0,2,1,""],print_edge_list:[0,2,1,""]},"idtxl.results.ResultsNetworkInference":{get_adjacency_matrix:[0,2,1,""],get_target_delays:[0,2,1,""],print_edge_list:[0,2,1,""]},"idtxl.results.ResultsPartialInformationDecomposition":{get_single_target:[0,2,1,""]},"idtxl.results.ResultsSingleProcessAnalysis":{get_significant_processes:[0,2,1,""],get_single_process:[0,2,1,""],processes_analysed:[0,3,1,""]},"idtxl.single_process_analysis":{SingleProcessAnalysis:[0,1,1,""]},"idtxl.stats":{ais_fdr:[0,4,1,""],check_n_perm:[0,4,1,""],max_statistic:[0,4,1,""],max_statistic_sequential:[0,4,1,""],max_statistic_sequential_bivariate:[0,4,1,""],mi_against_surrogates:[0,4,1,""],min_statistic:[0,4,1,""],network_fdr:[0,4,1,""],omnibus_test:[0,4,1,""],syn_shd_against_surrogates:[0,4,1,""],unq_against_surrogates:[0,4,1,""]},"idtxl.synergy_tartu":{BROJA_2PID_Exception:[0,5,1,""],I_X_Y:[0,4,1,""],I_X_YZ:[0,4,1,""],I_X_Z:[0,4,1,""],Solve_w_ECOS:[0,1,1,""],marginal_xy:[0,4,1,""],marginal_xz:[0,4,1,""],p_vidx:[0,4,1,""],pid:[0,4,1,""],q_vidx:[0,4,1,""],r_vidx:[0,4,1,""]},"idtxl.synergy_tartu.Solve_w_ECOS":{check_feasibility:[0,2,1,""],condYmutinf:[0,2,1,""],condZmutinf:[0,2,1,""],condentropy:[0,2,1,""],condentropy__orig:[0,2,1,""],create_model:[0,2,1,""],dual_value:[0,2,1,""],entropy_X:[0,2,1,""],provide_marginals:[0,2,1,""],solve:[0,2,1,""]},"idtxl.visualise_graph":{plot_mute_graph:[0,4,1,""],plot_network:[0,4,1,""],plot_network_comparison:[0,4,1,""],plot_selected_vars:[0,4,1,""]},idtxl:{active_information_storage:[0,0,0,"-"],bivariate_mi:[0,0,0,"-"],bivariate_te:[0,0,0,"-"],data:[0,0,0,"-"],estimator:[0,0,0,"-"],estimators_jidt:[0,0,0,"-"],estimators_opencl:[0,0,0,"-"],estimators_pid:[0,0,0,"-"],idtxl_exceptions:[0,0,0,"-"],idtxl_io:[0,0,0,"-"],idtxl_utils:[0,0,0,"-"],multivariate_mi:[0,0,0,"-"],multivariate_te:[0,0,0,"-"],network_analysis:[0,0,0,"-"],network_comparison:[0,0,0,"-"],network_inference:[0,0,0,"-"],partial_information_decomposition:[0,0,0,"-"],results:[0,0,0,"-"],single_process_analysis:[0,0,0,"-"],stats:[0,0,0,"-"],synergy_tartu:[0,0,0,"-"],visualise_graph:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"],"5":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function","5":"py:exception"},terms:{"1st":[0,1],"1th":[0,1],"2pid":[0,2],"abstract":[0,2],"boolean":[0,2],"break":[0,2],"class":[0,2,4,5,6,8],"default":[0,1,2,3,4,5,6,7],"export":0,"final":[0,2,5,6],"float":[0,1,2,3,4,5,6,7],"function":[0,1,2,5,6,8],"import":0,"int":[0,1,2,3,4,5,6,7],"null":[0,2],"return":[0,1,2,3,4,5,6,7],"true":[0,1,2,3,4,5,6,7],"v\u00f6gler":[0,6],"var":[0,1,2],"while":[0,1,2],AIS:[0,2,3,7,8],For:[0,1,2,3,5,6],ONE:[0,1],The:[0,2,3,4,5,8],There:[0,7],Use:[0,3],Uses:[0,5,6],_create_surrogate_t:[0,3],_single_target:[0,7],about:[0,4,6,7],abov:[0,2],abs:[0,6],absolut:[0,7],abzing:[0,2],accept:[0,1],access:[0,7],accord:[0,1,3],across:[0,3],actic:[0,2],activ:[0,2,3,7,8],active_information_storag:[6,8],activeinformationstorag:[0,6],actual:[0,1,2,3],adapt:[0,3],add:[0,2,5,6],add_condit:[0,5,6],added:[0,2,5,6,7],adding:[0,5,6],addit:[0,1],addition:[0,7],adjac:[0,7],adjacency_matrix:0,after:[0,3],again:[0,2,5],against:[0,3],ais:[0,6,7],ais_fdr:[0,3,6],ais_pval:[0,7],ais_sign:[0,7],albert:[0,2],alg_num:[0,2],algorithm:[0,2,7,8],algorithm_num:[0,2],algorithmexhaustederror:[0,3],all:[0,1,2,3,4,5,6,7],allow:[0,1,2,3],along:[0,3],alph1:[0,2],alph2:[0,2],alph:[0,2,6],alph_s1:[0,2,6],alph_s2:[0,2,6],alph_t:[0,2,6],alpha:[0,3,4,5,6],alpha_:[0,5,6],alpha_comp:[0,4],alpha_fdr:[0,3],alpha_max_seq:[0,3],alpha_max_stat:[0,3],alpha_mi:[0,3,7],alpha_min_stat:[0,3],alpha_omnibu:[0,3],alphabet:[0,2],alphc:[0,2],alreadi:[0,2,3,5],also:0,alwai:[0,2],analys:[0,7],analyse_network:[0,5,6],analyse_single_process:[0,6],analyse_single_target:[0,5,6],analysi:[0,1,2,3,4,5,7,8],analysis_setup:[0,3],analyt:[0,2],analyticnulldistribut:[0,2],analyz:[0,6],ani:[0,1],anoth:[0,2],appli:[0,2,3],approach:0,arang:[0,1],arg:[0,1,2,3,4,5,6,7],argsort_descend:[0,3],argument:[0,2],arrai:[0,1,2,3,4,5,6,7],array_nam:0,arxiv:[0,6],assign:[0,4],assum:[0,2],assumpt:[0,3],astyp:[0,6],attemp:[0,2],attempt:[0,2],attribut:[0,1,3,5,6,7],autocorrel:[0,3],autodetect:0,autoregress:[0,1],avail:[0,2,7],averag:[0,2],axes:[0,1],axi:[0,3],back:[0,1],base:[0,2,3,4,5,6],basi:0,basic:[0,3],becaus:[0,1,2,3],been:[0,2,4,7],beer:[0,6],befor:[0,2,7],being:8,benjamini:[0,7],bertsching:[0,2,6],between:[0,2,3,4,5,6],big:[0,3],bigger:[0,3],bin:[0,2,3],binari:[0,7],bivar:0,bivari:[0,2,3,7,8],bivariate_mi:[5,8],bivariate_t:[5,8],bivariatemi:[0,5],bivariatet:[0,5],block:[0,1],block_siz:[0,1],bmi:8,bnv:0,bool:[0,1,2,3,4,5,6,7],both:[0,2,3,4,7],bound:[0,2],boundari:[0,2],brain:0,brainnet:0,broja:[0,2],broja_2pid:[0,2],broja_2pid_except:0,bte:8,calcclass:[0,2],calcul:[0,1,2,3,4,5,6],calculate_link_t:[0,4],calculate_mi:[0,3],call:[0,2,3,5,6],can:[0,1,2,3,4,5,6,7],candid:[0,3,5,6],candidate_set:[0,3],cannot:[0,2,3],capabl:0,caus:0,causal:[0,5,6],chang:[0,2],channel:0,charact:[0,1,3],check:[0,2,3,4],check_feas:0,check_n_perm:[0,3],child:[0,2],choos:[0,3],chosen:[0,1],chunk:[0,2],circular:[0,1],cmi:[0,2,4,5,6],cmi_diff_ab:[0,7],cmi_estim:[0,4,5,6,7],code:[0,2],coeffici:[0,1,3],coefficient_matric:[0,1],collect:[0,4],color:0,column:[0,3],com:[0,2],combin:[0,1,3],combine_discrete_dimens:[0,3],combine_result:0,come:0,common:[0,2],common_estimate_surrogates_analyt:[0,2],commonli:0,comp:[0,5],compar:[0,3,4,7],compare_between:[0,4],compare_links_within:[0,4],compare_within:[0,4],comparison:[0,3,8],complet:[0,3],complex:[0,2,6],comprehens:0,comput:[0,2,5,6],computecombinedvalu:[0,3],concaten:[0,2],condentropi:0,condentropy__orig:0,condit:[0,2,3,4,5,6,7],conditionalmutualinfocalculatormultivariategaussian:[0,2],condymutinf:0,condzmutinf:0,cone:[0,2],cone_solv:[0,2],confid:[0,2],conflict:0,conflicting_entri:[0,3],connect:[0,4,5,7],connectom:0,consid:[0,3,5],consist:[0,1,5],consol:[0,2,3,4,5,6,7],constant:[0,3],construct:[0,5],contain:[0,2,3,5,6,7],context:[0,2],continu:[0,2,3],contribut:0,control:[0,2,4],conveni:[0,7],converg:[0,2],convert:0,coordin:0,copi:[0,3],corr:[0,3],correct:[0,3,5,6,7],correct_by_target:[0,3],correl:[0,3],correspond:[0,1,2,7],could:0,count:[0,1,2],coupl:[0,1],cpu:[0,8],crash:0,creat:[0,1,3,4],create_model:0,creation:[0,1,3,4,5,6],criterion:[0,7],critic:[0,3,4,5,6],current:[0,1,2,3,5,6,7],current_valu:[0,1,5,6,7],custom:0,data:[2,3,4,5,6,7,8],data_1:[0,1],data_2:[0,1],data_a:[0,4],data_b:[0,4],data_mut:[0,1],data_new:[0,1],data_properti:[0,7],data_set_a:[0,4],data_set_b:[0,4],debug:[0,2],decomposit:[0,2,7,8],decreas:[0,2],decrement:[0,2],defin:[0,2,3],degre:[0,2,3],delai:[0,2,7],denomin:[0,3],depend:[0,1,4],depth:[0,5,6],deriv:[0,3],descend:[0,3],describ:[0,2,5,6,7],descric:[0,2],descript:[0,5,6],detail:[0,2,3,4,5,6,7],detect:[0,3,4,5,6],determin:[0,1,7],deviat:[0,1,3],devic:[0,2],dict:[0,1,2,3,4,5,6,7],dict_1:[0,3],dict_2:[0,3],dictionari:[0,2,3,7],diff_ab:[0,7],differ:[0,1,2,3,4,7],differenti:[0,2],digraph:0,dim_ord:[0,1],dimens:[0,1,2,3],dimension:[0,1,3],direct:[0,2],discoveri:[0,3],discret:[0,1,2,3],discretis:[0,2,3],discretise_max_:[0,3],discretise_method:[0,2],discretisemaxentropi:[0,3],discuss:8,disk:0,displai:0,display_edge_label:0,distanc:[0,2],distribut:[0,2,3,6,7],divid:[0,3],docstr:[0,5,6],document:[0,2,3,4,5,6,7],doe:[0,2,3],doi:[0,2,5,6],don:0,done:[0,3,6],dot:[0,7],dotdict:0,down:[0,3],dual_valu:0,due:[0,2],duplic:0,dynam:[0,1,2,8],e16042161:[0,2,6],e68910:0,each:[0,1,2,3,4,5,6,7],eco:[0,2],edg:[0,7],effect:[0,4,5,7],effici:0,either:[0,2,3,5,6,7],embed:[0,1,2,4,5,6],empir:[0,2],empti:[0,1],engin:0,enough:[0,3],enter:[0,7],entri:[0,1,3,4,7],entropi:[0,2,3,6,7,8],entropy_x:0,equal:[0,2,3],equal_dict:[0,3],equival:[0,7],err:0,error:[0,2],est:0,estim:[1,3,4,5,6,7,8],estimate_parallel:[0,2],estimate_surrogates_analyt:[0,2],estimators_:[0,4,5,6],estimators_jidt:[2,8],estimators_opencl:[2,8],estimators_pid:[2,6,8],evenli:[0,3],everi:[0,2],exact:[0,2],exampl:[0,1,3,4,5,6],except:0,exclud:[0,5],exist:[0,1],expect:[0,1],experiment:[0,4],explan:0,exponenti:[0,2],export_brain_net_view:0,export_networkx_graph:0,export_networkx_source_graph:0,face:[0,4],fae:[0,5,6],fall:[0,1],fals:[0,1,2,3,5,6],fast:[0,2],faster:[0,3],fdr:[0,3,5,7],fdr_constant:[0,3],fdr_correct:[0,5,6],femal:[0,4],fewer:[0,7],field:[0,3],fieldtrip:0,fieldtriptoolbox:0,fifth:0,figur:0,file:0,file_nam:0,file_vers:0,find:[0,2,5,6],find_estim:0,first:[0,1,2,4],fit:[0,1],five:[0,1],fninf:[0,6],follow:[0,1],forc:[0,5,6],form:[0,1],format:[0,1,2],forth:[0,3],forum:[],found:[0,5,6],four:[0,4,5],fourth:0,free:[0,5],freedom:[0,3],from:[0,1,2,3,4,5,6,7],front:[0,2,6],fsampl:0,ft_datatype_raw:0,ft_struct_nam:0,full:[0,3,5],further:[0,4,5,6],futur:[0,2],galusk:[0,6],gaussian:[0,1,2],gener:[0,1,3,7],generate_logistic_maps_data:[0,1],generate_mute_data:[0,1,5,6],generate_var_data:[0,1],genoves:[0,3],get:[0,1,7],get_adjacency_matrix:[0,7],get_analytic_distribut:[0,2],get_realis:[0,1],get_significant_process:[0,7],get_single_process:[0,7],get_single_target:[0,7],get_target_delai:[0,7],get_target_sourc:[0,7],github:[0,2,3,8],give:[0,2],given:[0,1,2,3,7],glass:0,good:0,googl:8,gpu:[0,8],gpuid:[0,2],granger:[0,5,6],graph:0,grassberg:[0,2],greedi:0,group:[0,8],halv:[0,2],handl:0,hard:[0,2],has:[0,1,2,3,4,5,7],have:[0,1,2,3,4,5,6,7,8],hdf5:0,head:8,hehlotler:[0,3],hellother:[0,3],helper:8,henc:[0,2,5],here:[0,2],high:[0,2,7],higher:0,highest:[0,3,7],highest_protocol:0,histori:[0,2],history_sourc:[0,2],history_target:[0,2],hit:[0,2],hold:0,home:0,hopefulli:0,host:8,hous:[0,4],how:[0,2],howev:[0,2],http:[0,2,3,5,6],human:0,hypothesi:[0,2],i_1:[0,3],i_2:[0,3],i_x_i:0,i_x_yz:0,i_x_z:0,identifi:[0,3,7],idtxl:[1,2,3,4,5,6,7],idtxl_except:8,idtxl_io:8,idtxl_util:[3,8],idx:[0,1,5,6],idx_al:[0,3],idx_list:[0,1],idx_realis:[0,1],idx_singl:[0,3],ignor:[0,2],implement:[0,1,2,4],implicitli:[0,1],import_fieldtrip:0,import_matarrai:0,improv:[0,2],includ:[0,3,7],incom:[0,2],inconveni:0,increment:[0,2],ind:[0,1],indent:[0,3],independ:[0,2,4],index:[0,1,3,4,5,6,7,8],indic:[0,1,2,3,5,6,7],individu:[0,2,3,5,6,7],infer:[0,3,4,6,8],influenc:[0,5],infodynam:[0,3],infor:[0,2],inform:[0,1,3,4,7,8],initi:[0,2],initialis:[0,1],inner:[0,2,5],input:[0,2,3],ins:[0,6],insid:0,instanc:[0,1,2,3,4,5,6],instanti:[0,2],instead:[0,1,2,3,5,6],institut:[0,5],int32:[0,2],intact:[0,1],interact:[0,7],interfac:0,intermedi:[0,2],intern:0,is_analytic_null_estim:[0,2],is_parallel:[0,2],issu:8,iter:[0,5,6],its:[0,2,7],java:[0,2],jidt:[0,3,8],jidtdiscret:[0,2],jidtdiscreteai:[0,2],jidtdiscretecmi:[0,2],jidtdiscretemi:[0,2],jidtdiscretet:[0,2],jidtestim:[0,2],jidtgaussian:[0,2],jidtgaussianai:[0,2],jidtgaussiancmi:[0,2],jidtgaussianmi:[0,2],jidtgaussiant:[0,2],jidtkraskov:[0,2],jidtkraskovai:[0,2],jidtkraskovcmi:[0,2,5,6],jidtkraskovmi:[0,2],jidtkraskovt:[0,2],jidtoutofmemoryerror:[0,2],joint:[0,2,3,4,5],joseph:[0,2],jost:[0,2,6],journal:0,jpackag:[0,2],jpype:[0,2],keep:[0,1,2],kei:[0,3],keyword:[0,7],knn:[0,2],kraskov:[0,2],kraskov_k:[0,2],ksg:[0,2],kwarg:0,label:0,labl:0,lag:[0,1,2,5,6,7],lag_mi:[0,2],lags_pid:[0,6],larger:[0,2],last:[0,3],later:0,latter:[0,2],lazar:[0,3],len:[0,3],length:[0,1,3,6],les:0,lett:[0,2,5],level:[0,2,3,4,5,6],like:[0,7],limit:[0,2],lindner:[0,5],line:[0,4],linear:[0,1],link:[0,3,4,5,7],link_a:[0,4],link_b:[0,4],list:[0,1,3,4,5,6,7],list_estim:0,lizier:[0,2,3,5,6],load:0,load_pickl:0,local:[0,1,2,6],local_valu:[0,2],locat:0,logic:[0,3],logical_xor:[0,6],logist:[0,1],longer:0,look:[0,7,8],loop:[0,2],loos:[0,1],lowest:[0,3],machin:[0,2],made:[0,3],mai:[0,2,7],make:[0,2,3],makkeh:[0,2],male:[0,4],mani:[0,2],manual:0,map:[0,1,3],marg_xi:0,marg_xz:0,marginal_xi:0,marginal_xz:0,mass:[0,2],mat:0,match:[0,4],matlab:0,matplotlib:0,matric:[0,1],matrix:[0,1,7],matrixutil:[0,3],max:[0,1,3,5],max_ent:[0,2],max_it:[0,2,6],max_lag:[0,5,6],max_lag_sourc:[0,5],max_lag_target:[0,5],max_p:[0,7],max_p_lag:[0,7],max_seq:[0,5],max_shift:[0,1],max_stat:[0,5,6],max_statist:[0,3],max_statistic_sequenti:[0,3],max_statistic_sequential_bivari:[0,3],max_t:[0,7],max_te_lag:[0,7],max_unsuc_swaps_row_parm:[0,2,6],maximis:[0,5,6],maximum:[0,1,2,3,5,6,7],measur:[0,2,5,6,7],mem:[0,2],memori:0,messag:0,method:[0,1,2,3,4,5,6,7],mi_against_surrog:[0,3],mi_omnibu:[0,5],mi_sign_sourc:[0,5],mikhail:[0,2],min:[0,3],min_lag:[0,5],min_lag_sourc:[0,5],min_stat:[0,5,6],min_statist:[0,3],minimum:[0,3,5],mis:[0,5],miss:0,mmi:8,mni:0,mni_coord:0,model:[0,1,5],modul:[2,4,5,6,8],montalto:[0,1],more:[0,2,5,6,8],mpg:[0,5],mte:8,multi:[0,3],multipl:[0,1,2,4,6,7],multipli:[0,3],multivar:0,multivari:[0,2,3,4,6,7,8],multivariate_mi:[5,8],multivariate_t:[5,8],multivariatemi:[0,5],multivariatet:[0,3,5,7],must:[0,1,2,3,6],mute:[0,1],mutual:[0,2,3,6,8],n_chunk:[0,2],n_discrete_bin:[0,2],n_node:[0,7],n_perm:[0,2,3],n_perm_:[0,5,6],n_perm_comp:[0,4],n_perm_max_seq:[0,3,5],n_perm_max_stat:[0,3,5,6],n_perm_mi:[0,3],n_perm_min_stat:[0,3,5,6],n_perm_omnibu:[0,3,5],n_process:[0,1],n_realis:[0,1,7],n_realisations_repl:[0,1],n_realisations_sampl:[0,1],n_replic:[0,1],n_sampl:[0,1],name:0,nearest:[0,2],nearli:[0,2],necessari:[0,1],need:[0,2],neighborhood:[0,2],neighbour:[0,2],network:[0,1,3,6,8],network_a:[0,4],network_analysi:[5,6,8],network_b:[0,4],network_comparison:[4,8],network_fdr:[0,3,5,7],network_infer:8,network_set_a:[0,4],network_set_b:[0,4],networkanalysi:0,networkcomparison:[0,4],networkinfer:0,networkinferencebivari:0,networkinferencemi:0,networkinferencemultivari:0,networkinferencet:0,networkx:0,neural:[0,6],neuroimag:[0,3],neuroinf:[0,6],neurophysiolog:0,neurosci:[0,5],never:[0,2],next:[0,2],nichol:[0,3],nitrc:0,node:[0,3,5,8],node_color:0,node_s:0,nois:[0,1,2],noise_level:[0,2],noise_std:[0,1],nollo:[0,5,6],non:[0,1,3,5,6],none:[0,1,2,3],nonlinear:[0,5,6],nonneg:[0,6],nonuniform:[0,5,6],normalis:[0,1,2,6,7],notat:[0,7],note:[0,1,2,3,4,5,6,7],now:[0,3],num_rep:[0,2,6],num_thread:[0,2],number:[0,1,2,3,4,5,6,7],numbin:[0,3],numer:[0,2],numpi:[0,1,2,3,4,5,7],obj:0,object:[0,1,2,3,4],observ:[0,2,4,5],obtain:[0,3],occur:0,offer:0,olbrich:[0,2,6],old:[0,3],omnibu:[0,3,5],omnibus_pv:0,omnibus_sign:0,omnibus_t:0,omnibus_test:[0,3],onc:[0,2],one:[0,2,3,4,6],onli:[0,1,2,3,5],opencl:[0,8],openclkraskov:[0,2],openclkraskovcmi:[0,2],openclkraskovmi:[0,2],oppos:[0,2],optim:[0,2],option:[0,1,2,3,4,5,6,7],order:[0,1,3],org:[0,2,5,6],origin:[0,1,2,3],other:[0,3,5,6],otherwis:[0,3],our:[0,2],out:0,outer:[0,2],outofmemoryexcept:0,output:[0,2,4,5,6,7],outsid:[0,2],over:[0,1,2,3,4,5],overwrit:[0,1,2],own:[0,5,6],p_valu:[0,3],p_vidx:0,packag:2,package_miss:0,page:[0,3,8],pair:[0,5,6],paper:[0,1,3],parallel:[0,1,2,3],paramet:[0,2,3,4,5,6],parent:[0,2,7],part:[0,4],partial:[0,2,3,7,8],partial_information_decomposit:[3,6,8],partialinformationdecomposit:[0,6],partic:[0,2],particip:[0,4],particular:[0,3],partit:[0,3],pass:[0,2,3,4],past:[0,2,3,4,5,6,7],path:0,patient:[0,4],pattern:[0,1],pdf:[0,5],pdf_dirti:0,per:[0,1,2,3],perform:[0,2,3,5,6],performancetip:[0,3],perm_rang:[0,1],perm_set:[0,1],perm_typ:[0,1],permut:[0,1,2,3,4,5,6],permute_in_tim:[0,3,4,5,6],permute_repl:[0,1],permute_sampl:[0,1,4,5,6],permutet:[0,1],perspect:[0,2],phy:[0,2,5,6],physrev:[0,5,6],physrevlett:[0,5],pickl:0,pid:[0,3,7,8],pid_analysi:[0,6],pid_calc_nam:[0,6],pid_estim:[0,6],pipa:[0,5],planck:[0,5],platform:[0,2],plo:[0,1],plot:0,plot_mute_graph:0,plot_network:0,plot_network_comparison:0,plot_selected_var:0,plug:[0,2],point:[0,1,2,3,7],pointless:[0,3],pone:0,porta:[0,5,6],possibl:[0,2,3],potenti:[0,5],power:[0,3],practic:[0,2],predict:[0,3],preprint2012_25:[0,5],preprint:[0,5],present:[0,3],pretti:[0,3],previous:[0,5,6],priesemann:[0,6],print:[0,2,3,7],print_dict:[0,3],print_edge_list:[0,7],printer:[0,3],probabl:[0,2],problem:8,proc:[0,1],process:[0,1,2,3,4,5,6,7],process_set:[0,6],processes_analys:[0,7],produc:0,program:[0,2],project:0,prokopenko:[0,2,6],properti:[0,2,7],propos:[0,2],protocol:0,provid:[0,1,2,3,4,7],provide_margin:0,prune:[0,3,5,6],psr:[0,1],pval:[0,7],pvalu:[0,5,6,7],pvalue_omnibu:[0,5],pvalues_sign_sourc:[0,5],pypi:[0,2],python3:0,python:[0,2,3],q_vidx:0,qualit:0,quantifi:[0,2,6],r_vidx:0,rais:[0,1,2,3],randint:[0,6],random:[0,1,2,6],rang:[0,1,2,3],rank:[0,3],rate:[0,3],rauh:[0,2,6],raw:[0,1,2,3,4,5,6],re_us:0,read:0,realis:[0,1,2,3,5,6],realisatin:0,realiz:[0,2],record:[0,4],reduc:0,refer:[0,1,2,3,5,6],regard:[0,7],regular:0,relationship:[0,2],relev:[0,3,5,6],remain:[0,3],reman:[0,3],remanin:[0,3],remov:[0,2,3],remove_column:[0,3],remove_row:[0,3],repeat:[0,3],repl:[0,1],replic:[0,1,2,3,4,5,6],report:[0,8],repres:[0,1,2,3,7],request:[0,1,3],requir:[0,2,3],res_network:[0,7],res_pid:[0,7],reshap:[0,1],respect:[0,2,5],restrict:[0,3],result:[2,3,4,5,6,8],resultsnetworkanalysi:0,resultsnetworkcomparison:[0,4,7],resultsnetworkinfer:[0,3,5,7],resultspartialinformationdecomposit:[0,6,7],resultssingleprocessanalysi:[0,3,6,7],retriev:[0,5,6],return_calc:[0,2],return_count:[0,2],rev:[0,2,5,6],robot:[0,2],round:[0,3],routin:0,row:[0,2,3],rubinov:[0,5],run:[0,2],s10827:[0,5],s1_unq:[0,7],s2_unq:[0,7],same:[0,1,2,3,4,5,6],sampl:[0,1,2,3,5,6,7],save:[0,2,3],save_pickl:0,scheme:[0,1],schreiber:[0,2,5],sci:[0,2,6],scipi:[0,3],search:[0,2,5,6,8],second:[0,2,3,4],see:[0,2,3,4,5,6,7],select:[0,3,4,5],selected_sources_pv:0,selected_sources_t:0,selected_var:[0,7],selected_vars_ful:[0,5,6],selected_vars_sourc:[0,5,7],selected_vars_target:[0,5,7],self:0,separ:[0,3,5],separate_arrai:[0,3],sequenti:[0,3],seri:[0,1,2],serial:0,set:[0,1,2,3,4,5,6,7],set_data:[0,1],setup:[0,3],sever:[0,1],shape:[0,3],share:[0,2,3,6,7],shd_s1_s2:[0,7],shift:[0,1],should:[0,2,3],show:0,shuffl:[0,1,3,4,5,6],side:[0,4],sign:[0,6],sign_ominbu:[0,5],sign_sourc:0,signal:0,signific:[0,3,4,5,6,7],significantli:[0,3],similar:[0,2],simul:[0,1],singl:[0,3,4,5,6,7],single_process_analysi:8,singleprocessanalysi:0,singleton:0,size:[0,1,2],slice:[0,1],slice_permute_repl:[0,1],slice_permute_sampl:[0,1],small:[0,1,3],smaller:[0,2,3],smallest:[0,7],soft:[0,2],softwar:0,solv:0,solve_w_eco:0,solver:[0,2],solver_arg:[0,2],some:[0,2],sort:[0,3],sort_descend:[0,3],sortind:[0,3],sourc:[0,1,2,3,4,5,6,7],source_1:[0,7],source_2:[0,7],source_set:[0,5],source_target_delai:[0,2],sources_test:0,space:[0,2,5,6],specif:[0,7],specifi:[0,1,5,6,7],spr:[0,1],squar:[0,1],squeez:0,stage:[0,2],stai:[0,1],stamp:0,standard:[0,1,3],standardis:[0,1,2,3,7],start:[0,1],stat:[5,6,7,8],state:[0,2,6,7],statis:[0,3],statist:[0,1,3,4,5,6,7],statistic_omnibu:[0,5],statistic_sign_sourc:[0,5],stats_typ:[0,4],step:[0,5,6],stochast:[0,1,7],stoegbauer:[0,2],stop:[0,3],storag:[0,2,3,7,8],store:[0,1,7],str:[0,1,2,4,5,6,7],strategi:[0,1],string:[0,1,3,5,6],structur:[0,1],studi:[0,2],style:0,subject:[0,4],subplot:0,subset:[0,3,6],suffici:[0,1],sum_i:[0,3],support:[0,2],surrog:[0,1,2,3,4,5,6,7],surrogate_distribut:[0,7],swap:[0,1,2,3],swap_char:[0,3],sydneypid:[0,2,6],syn_s1_s2:[0,7],syn_shd_against_surrog:[0,3],synergist:[0,2,3,6,7],synergy_tartu:8,system:[0,2],tabl:[0,3],tail:[0,4],tail_comp:[0,4],take:[0,1],taken:[0,2,3],target:[0,2,3,4,5,6,7],targets_analys:[0,7],tartupid:[0,2],task:[0,4],tau:[0,2,6],tau_sourc:[0,2,5],tau_target:[0,2,5],te_max_candid:[0,3],te_min_candid:[0,3],technic:[0,2],techniqu:[0,5,6],tempor:[0,1,2,5,6],test:[0,1,3,4,5,6,7],text:0,than:[0,2,3],thei:[0,2],theiler:[0,2],theiler_t:[0,2],them:0,theoret:[0,3,7,8],theori:0,thi:[0,1,2,3,4,5,6,7],third:[0,2],thread:[0,2],three:[0,1,2,5,6],threshold:[0,3],through:[0,5,6],thu:[0,1],time:[0,1,2,3,4,5,6],toggl:[0,4,5,6],too:[0,1,2],tool:[0,6],toolbox:[0,1],toolkit:[0,2],total:[0,1,2,7],tracker:8,tranfer:[0,7],transfer:[0,2,3,4,7,8],treat:[0,5],trial:[0,1,2],tupl:[0,1,3,5,6,7],tutori:8,two:[0,1,2,3,4,5,6,7],type:[0,1,2,4,6],typeerror:[0,1],uncorrect:[0,7],uncorrel:[0,1],under:[0,2,4],understand:[0,6],unequ:[0,3],uniform:[0,2,5,6],union:[0,7],uniqu:[0,2,3,6,7],unit:[0,4],univari:[0,3],unq_against_surrog:[0,3],unsuccess:[0,2],until:[0,2],unweight:[0,7],upon:0,upper:[0,2],usag:[0,2],use:[0,2,3,4,6,7],use_al:[0,2],used:[0,1,2,3,4,5,6,7],user:[0,8],uses:[0,2,5],using:[0,1,2,3,5,6,7],util:[0,8],utilis:[0,2],valid:0,valu:[0,1,2,3,4,5,6,7],var1:[0,2],var2:[0,2],vari:[0,2],variabl:[0,1,2,3,4,5,6,7],variou:[0,1],vars_count:[0,7],vector:[0,1,3],verbos:[0,2,4,5,6],version:[0,2],via:[0,1,2,5,6,7],vicent:[0,2,5],viewer:0,virtualis:[0,2],visual:0,visualis:0,visualise_graph:8,vitrualis:[0,2],vstack:[0,6],wai:[0,7],wang:0,want:[0,8],warn:0,weight:[0,7],well:[0,2,3],were:[0,5,6,7],when:[0,1,2,3,5,6],where:[0,1,2,3,5,6],whether:[0,7],which:[0,1,2,3,4],whole:[0,3,4,5,6],wibral:[0,5,6],wiki:[0,3,8],william:[0,6],window:[0,2],wise:[0,1],within:[0,1,4],written:0,wrt:[0,5,6,7],www:[0,5],xia:0,you:[0,8],your:[0,2],zomaya:[0,2,6]},titles:["idtxl package","The Data Class","Information theoretic estimators","Helper functions","Network comparison","Algorithms for network inference","Algorithms for the analysis of node dynamics","The Results Class","Welcome to IDTxl\u2019s documentation!"],titleterms:{"class":[1,7],"function":3,AIS:6,The:[1,7],activ:6,active_information_storag:0,algorithm:[5,6],analysi:6,bivari:5,bivariate_mi:0,bivariate_t:0,bmi:5,bte:5,comparison:[4,7],content:[0,8],cpu:2,data:[0,1],decomposit:6,document:8,dynam:[6,7],entropi:5,estim:[0,2],estimators_jidt:0,estimators_opencl:0,estimators_pid:0,gpu:2,helper:3,idtxl:[0,8],idtxl_except:0,idtxl_io:0,idtxl_util:0,indic:8,infer:[5,7],inform:[2,5,6],jidt:2,mmi:5,modul:[0,3],mte:5,multivari:5,multivariate_mi:0,multivariate_t:0,mutual:5,network:[4,5,7],network_analysi:0,network_comparison:0,network_infer:0,node:[6,7],opencl:2,packag:[0,8],partial:6,partial_information_decomposit:0,pid:[2,6],result:[0,7],single_process_analysi:0,stat:[0,3],storag:6,synergy_tartu:0,tabl:8,theoret:2,transfer:5,util:3,visualise_graph:0,welcom:8}}) \ No newline at end of file +Search.setIndex({docnames:["idtxl","idtxl_data_class","idtxl_estimators","idtxl_helper","idtxl_network_comparison","idtxl_network_inference","idtxl_process_analysis","idtxl_results_class","index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:55},filenames:["idtxl.rst","idtxl_data_class.rst","idtxl_estimators.rst","idtxl_helper.rst","idtxl_network_comparison.rst","idtxl_network_inference.rst","idtxl_process_analysis.rst","idtxl_results_class.rst","index.rst"],objects:{"":{idtxl:[0,0,0,"-"]},"idtxl.active_information_storage":{ActiveInformationStorage:[0,1,1,""]},"idtxl.active_information_storage.ActiveInformationStorage":{analyse_network:[0,2,1,""],analyse_single_process:[0,2,1,""]},"idtxl.bivariate_mi":{BivariateMI:[0,1,1,""]},"idtxl.bivariate_mi.BivariateMI":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.bivariate_te":{BivariateTE:[0,1,1,""]},"idtxl.bivariate_te.BivariateTE":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.data":{Data:[0,1,1,""]},"idtxl.data.Data":{data:[0,3,1,""],generate_logistic_maps_data:[0,2,1,""],generate_mute_data:[0,2,1,""],generate_var_data:[0,2,1,""],get_realisations:[0,2,1,""],n_realisations:[0,2,1,""],n_realisations_repl:[0,2,1,""],n_realisations_samples:[0,2,1,""],permute_replications:[0,2,1,""],permute_samples:[0,2,1,""],set_data:[0,2,1,""],slice_permute_replications:[0,2,1,""],slice_permute_samples:[0,2,1,""]},"idtxl.estimator":{Estimator:[0,1,1,""],find_estimator:[0,4,1,""],list_estimators:[0,4,1,""]},"idtxl.estimator.Estimator":{estimate:[0,2,1,""],estimate_parallel:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_jidt":{JidtDiscrete:[0,1,1,""],JidtDiscreteAIS:[0,1,1,""],JidtDiscreteCMI:[0,1,1,""],JidtDiscreteMI:[0,1,1,""],JidtDiscreteTE:[0,1,1,""],JidtEstimator:[0,1,1,""],JidtGaussian:[0,1,1,""],JidtGaussianAIS:[0,1,1,""],JidtGaussianCMI:[0,1,1,""],JidtGaussianMI:[0,1,1,""],JidtGaussianTE:[0,1,1,""],JidtKraskov:[0,1,1,""],JidtKraskovAIS:[0,1,1,""],JidtKraskovCMI:[0,1,1,""],JidtKraskovMI:[0,1,1,""],JidtKraskovTE:[0,1,1,""],common_estimate_surrogates_analytic:[0,4,1,""]},"idtxl.estimators_jidt.JidtDiscrete":{estimate_surrogates_analytic:[0,2,1,""],get_analytic_distribution:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteAIS":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteCMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtDiscreteTE":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtEstimator":{is_parallel:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussian":{estimate_surrogates_analytic:[0,2,1,""],get_analytic_distribution:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianAIS":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianCMI":{estimate:[0,2,1,""],get_analytic_distribution:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtGaussianTE":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskov":{is_analytic_null_estimator:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovAIS":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovCMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovMI":{estimate:[0,2,1,""]},"idtxl.estimators_jidt.JidtKraskovTE":{estimate:[0,2,1,""]},"idtxl.estimators_opencl":{OpenCLKraskov:[0,1,1,""],OpenCLKraskovCMI:[0,1,1,""],OpenCLKraskovMI:[0,1,1,""]},"idtxl.estimators_opencl.OpenCLKraskov":{is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_opencl.OpenCLKraskovCMI":{estimate:[0,2,1,""]},"idtxl.estimators_opencl.OpenCLKraskovMI":{estimate:[0,2,1,""]},"idtxl.estimators_pid":{SydneyPID:[0,1,1,""],TartuPID:[0,1,1,""]},"idtxl.estimators_pid.SydneyPID":{estimate:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.estimators_pid.TartuPID":{estimate:[0,2,1,""],is_analytic_null_estimator:[0,2,1,""],is_parallel:[0,2,1,""]},"idtxl.idtxl_exceptions":{AlgorithmExhaustedError:[0,5,1,""],BROJA_2PID_Exception:[0,5,1,""],JidtOutOfMemoryError:[0,5,1,""],package_missing:[0,4,1,""]},"idtxl.idtxl_io":{export_brain_net_viewer:[0,4,1,""],export_networkx_graph:[0,4,1,""],export_networkx_source_graph:[0,4,1,""],import_fieldtrip:[0,4,1,""],import_matarray:[0,4,1,""],load_pickle:[0,4,1,""],save_pickle:[0,4,1,""]},"idtxl.idtxl_utils":{argsort_descending:[0,4,1,""],autocorrelation:[0,4,1,""],calculate_mi:[0,4,1,""],combine_discrete_dimensions:[0,4,1,""],conflicting_entries:[0,4,1,""],discretise:[0,4,1,""],discretise_max_ent:[0,4,1,""],equal_dicts:[0,4,1,""],print_dict:[0,4,1,""],remove_column:[0,4,1,""],remove_row:[0,4,1,""],separate_arrays:[0,4,1,""],sort_descending:[0,4,1,""],standardise:[0,4,1,""],swap_chars:[0,4,1,""]},"idtxl.multivariate_mi":{MultivariateMI:[0,1,1,""]},"idtxl.multivariate_mi.MultivariateMI":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.multivariate_te":{MultivariateTE:[0,1,1,""]},"idtxl.multivariate_te.MultivariateTE":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.network_analysis":{NetworkAnalysis:[0,1,1,""]},"idtxl.network_analysis.NetworkAnalysis":{current_value:[0,3,1,""],selected_vars_full:[0,3,1,""],selected_vars_sources:[0,3,1,""],selected_vars_target:[0,3,1,""]},"idtxl.network_comparison":{NetworkComparison:[0,1,1,""]},"idtxl.network_comparison.NetworkComparison":{calculate_link_te:[0,2,1,""],compare_between:[0,2,1,""],compare_links_within:[0,2,1,""],compare_within:[0,2,1,""]},"idtxl.network_inference":{NetworkInference:[0,1,1,""],NetworkInferenceBivariate:[0,1,1,""],NetworkInferenceMI:[0,1,1,""],NetworkInferenceMultivariate:[0,1,1,""],NetworkInferenceTE:[0,1,1,""]},"idtxl.partial_information_decomposition":{PartialInformationDecomposition:[0,1,1,""]},"idtxl.partial_information_decomposition.PartialInformationDecomposition":{analyse_network:[0,2,1,""],analyse_single_target:[0,2,1,""]},"idtxl.results":{AdjacencyMatrix:[0,1,1,""],DotDict:[0,1,1,""],Results:[0,1,1,""],ResultsNetworkAnalysis:[0,1,1,""],ResultsNetworkComparison:[0,1,1,""],ResultsNetworkInference:[0,1,1,""],ResultsPartialInformationDecomposition:[0,1,1,""],ResultsSingleProcessAnalysis:[0,1,1,""]},"idtxl.results.AdjacencyMatrix":{add_edge:[0,2,1,""],add_edge_list:[0,2,1,""],get_edge_list:[0,2,1,""],n_edges:[0,2,1,""],n_nodes:[0,2,1,""],print_matrix:[0,2,1,""]},"idtxl.results.Results":{combine_results:[0,2,1,""]},"idtxl.results.ResultsNetworkAnalysis":{get_single_target:[0,2,1,""],get_target_sources:[0,2,1,""],targets_analysed:[0,3,1,""]},"idtxl.results.ResultsNetworkComparison":{get_adjacency_matrix:[0,2,1,""],get_single_target:[0,2,1,""],get_target_sources:[0,2,1,""],print_edge_list:[0,2,1,""]},"idtxl.results.ResultsNetworkInference":{get_adjacency_matrix:[0,2,1,""],get_target_delays:[0,2,1,""],print_edge_list:[0,2,1,""]},"idtxl.results.ResultsPartialInformationDecomposition":{get_single_target:[0,2,1,""]},"idtxl.results.ResultsSingleProcessAnalysis":{get_significant_processes:[0,2,1,""],get_single_process:[0,2,1,""],processes_analysed:[0,3,1,""]},"idtxl.single_process_analysis":{SingleProcessAnalysis:[0,1,1,""]},"idtxl.stats":{ais_fdr:[0,4,1,""],check_n_perm:[0,4,1,""],max_statistic:[0,4,1,""],max_statistic_sequential:[0,4,1,""],max_statistic_sequential_bivariate:[0,4,1,""],mi_against_surrogates:[0,4,1,""],min_statistic:[0,4,1,""],network_fdr:[0,4,1,""],omnibus_test:[0,4,1,""],syn_shd_against_surrogates:[0,4,1,""],unq_against_surrogates:[0,4,1,""]},"idtxl.synergy_tartu":{I_X_Y:[0,4,1,""],I_X_YZ:[0,4,1,""],I_X_Z:[0,4,1,""],Solve_w_ECOS:[0,1,1,""],marginal_xy:[0,4,1,""],marginal_xz:[0,4,1,""],p_vidx:[0,4,1,""],pid:[0,4,1,""],q_vidx:[0,4,1,""],r_vidx:[0,4,1,""]},"idtxl.synergy_tartu.Solve_w_ECOS":{check_feasibility:[0,2,1,""],condYmutinf:[0,2,1,""],condZmutinf:[0,2,1,""],condentropy:[0,2,1,""],condentropy__orig:[0,2,1,""],create_model:[0,2,1,""],dual_value:[0,2,1,""],entropy_X:[0,2,1,""],provide_marginals:[0,2,1,""],solve:[0,2,1,""]},"idtxl.visualise_graph":{plot_mute_graph:[0,4,1,""],plot_network:[0,4,1,""],plot_network_comparison:[0,4,1,""],plot_selected_vars:[0,4,1,""]},idtxl:{active_information_storage:[0,0,0,"-"],bivariate_mi:[0,0,0,"-"],bivariate_te:[0,0,0,"-"],data:[0,0,0,"-"],estimator:[0,0,0,"-"],estimators_jidt:[0,0,0,"-"],estimators_opencl:[0,0,0,"-"],estimators_pid:[0,0,0,"-"],idtxl_exceptions:[0,0,0,"-"],idtxl_io:[0,0,0,"-"],idtxl_utils:[0,0,0,"-"],multivariate_mi:[0,0,0,"-"],multivariate_te:[0,0,0,"-"],network_analysis:[0,0,0,"-"],network_comparison:[0,0,0,"-"],network_inference:[0,0,0,"-"],partial_information_decomposition:[0,0,0,"-"],results:[0,0,0,"-"],single_process_analysis:[0,0,0,"-"],stats:[0,0,0,"-"],synergy_tartu:[0,0,0,"-"],visualise_graph:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"],"5":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function","5":"py:exception"},terms:{"1st":[0,1],"1th":[0,1],"2pid":[0,2],"abstract":[0,2],"boolean":[0,2],"break":[0,2],"class":[0,2,4,5,6,8],"default":[0,1,2,3,4,5,6,7],"export":0,"final":[0,2,5,6],"float":[0,1,2,3,4,5,6,7],"function":[0,1,2,5,6,8],"import":0,"int":[0,1,2,3,4,5,6,7],"new":[0,1],"null":[0,2],"return":[0,1,2,3,4,5,6,7],"true":[0,1,2,3,4,5,6,7],"v\u00f6gler":[0,6],"var":[0,1,2],"while":[0,1,2],AIS:[0,2,3,7,8],For:[0,1,2,3,5,6],ONE:[0,1],The:[0,2,3,4,5,8],There:[0,7],Use:[0,3],Uses:[0,5,6],_create_surrogate_t:[0,3],_single_target:[0,7],about:[0,4,6,7],abov:[0,2],abs:[0,6],absolut:[0,7],abzing:[0,2],accept:[0,1],access:[0,7],accord:[0,1,3],across:[0,3],actic:[0,2],activ:[0,2,3,7,8],active_information_storag:[6,8],activeinformationstorag:[0,6],actual:[0,1,2,3],adapt:[0,3],add:[0,2,5,6],add_condit:[0,5,6],add_edg:0,add_edge_list:0,added:[0,2,5,6,7],adding:[0,5,6],addit:[0,1],addition:[0,7],adjac:[0,7],adjacency_matrix:0,adjacencymatrix:[0,7],after:[0,3],again:[0,2,5],against:[0,3],ais:[0,6,7],ais_fdr:[0,3,6],ais_pval:[0,7],ais_sign:[0,7],albert:[0,2],alg_num:[0,2],algorithm:[0,2,7,8],algorithm_num:[0,2],algorithmexhaustederror:[0,3],all:[0,1,2,3,4,5,6,7],allow:[0,1,2,3],along:[0,3],alph1:[0,2],alph2:[0,2],alph:[0,2,6],alph_s1:[0,2,6],alph_s2:[0,2,6],alph_t:[0,2,6],alpha:[0,3,4,5,6],alpha_:[0,5,6],alpha_comp:[0,4],alpha_fdr:[0,3],alpha_max_seq:[0,3],alpha_max_stat:[0,3],alpha_mi:[0,3,7],alpha_min_stat:[0,3],alpha_omnibu:[0,3],alphabet:[0,2],alphc:[0,2],alreadi:[0,2,3,5],also:0,alwai:[0,2],analys:[0,7],analyse_network:[0,5,6],analyse_single_process:[0,6],analyse_single_target:[0,5,6],analysi:[0,1,2,3,4,5,7,8],analysis_setup:[0,3],analyt:[0,2],analyticnulldistribut:[0,2],analyz:[0,6],ani:[0,1],anoth:[0,2],appli:[0,2,3],approach:0,arang:[0,1],arg:[0,1,2,3,4,5,6,7],argsort_descend:[0,3],argument:[0,2],arrai:[0,1,2,3,4,5,6,7],array_nam:0,arxiv:[0,6],assign:[0,4],assum:[0,2],assumpt:[0,3],astyp:[0,6],attemp:[0,2],attempt:[0,2],attribut:[0,1,3,5,6,7],autocorrel:[0,3],autodetect:0,autoregress:[0,1],avail:[0,2,7],averag:[0,2],axes:[0,1],axi:[0,3],baccala:[0,1],back:[0,1],base:[0,2,3,4,5,6],basi:0,basic:[0,3],becaus:[0,1,2,3],been:[0,2,4,7],beer:[0,6],befor:[0,2,7],being:8,benjamini:[0,7],bertsching:[0,2,6],between:[0,2,3,4,5,6],big:[0,3],bigger:[0,3],bin:[0,2,3],binari:[0,7],biol:[0,1],bivar:0,bivari:[0,2,3,7,8],bivariate_mi:[5,8],bivariate_t:[5,8],bivariatemi:[0,5],bivariatet:[0,5],block:[0,1],block_siz:[0,1],bmi:8,bnv:0,bool:[0,1,2,3,4,5,6,7],both:[0,2,3,4,7],bound:[0,2],boundari:[0,2],brain:0,brainnet:0,broja:[0,2],broja_2pid:[0,2],broja_2pid_except:0,bte:8,calcclass:[0,2],calcul:[0,1,2,3,4,5,6],calculate_link_t:[0,4],calculate_mi:[0,3],call:[0,2,3,5,6],can:[0,1,2,3,4,5,6,7],candid:[0,3,5,6],candidate_set:[0,3],cannot:[0,2,3],capabl:0,caus:0,causal:[0,5,6],chang:[0,2],channel:0,charact:[0,1,3],check:[0,2,3,4],check_feas:0,check_n_perm:[0,3],child:[0,2],choos:[0,3],chosen:[0,1],chunk:[0,2],circular:[0,1],cmi:[0,2,4,5,6],cmi_diff_ab:[0,7],cmi_estim:[0,4,5,6,7],code:[0,2],coeffici:[0,1,3],coefficient_matric:[0,1],coher:[0,1],collect:[0,4],color:0,column:[0,3],com:[0,2],combin:[0,1,3],combine_discrete_dimens:[0,3],combine_result:0,come:0,common:[0,2],common_estimate_surrogates_analyt:[0,2],commonli:0,comp:[0,5],compar:[0,1,3,4,7],compare_between:[0,4],compare_links_within:[0,4],compare_within:[0,4],comparison:[0,3,8],complet:[0,3],complex:[0,2,6],comprehens:0,comput:[0,2,5,6],computecombinedvalu:[0,3],concaten:[0,2],concept:[0,1],condentropi:0,condentropy__orig:0,condit:[0,2,3,4,5,6,7],conditionalmutualinfocalculatormultivariategaussian:[0,2],condymutinf:0,condzmutinf:0,cone:[0,2],cone_solv:[0,2],confid:[0,2],conflict:0,conflicting_entri:[0,3],connect:[0,4,5,7],connectom:0,consid:[0,3,5],consist:[0,1,5],consol:[0,2,3,4,5,6,7],constant:[0,3],construct:[0,5],contain:[0,2,3,5,6,7],context:[0,2],continu:[0,2,3],contribut:0,control:[0,2,4],conveni:[0,7],converg:[0,2],convert:0,coordin:0,copi:[0,3],corr:[0,3],correct:[0,3,5,6,7],correct_by_target:[0,3],correl:[0,3],correspond:[0,1,2,7],could:0,count:[0,1,2],coupl:[0,1],cpu:[0,8],crash:0,creat:[0,1,3,4],create_model:0,creation:[0,1,3,4,5,6],criterion:[0,7],critic:[0,3,4,5,6],current:[0,1,2,3,5,6,7],current_valu:[0,1,5,6,7],custom:0,cybern:[0,1],data:[2,3,4,5,6,7,8],data_1:[0,1],data_2:[0,1],data_a:[0,4],data_b:[0,4],data_mut:[0,1],data_new:[0,1],data_properti:[0,7],data_set_a:[0,4],data_set_b:[0,4],debug:[0,2],decomposit:[0,2,7,8],decreas:[0,2],decrement:[0,2],defin:[0,2,3],degre:[0,2,3],delai:[0,2,7],denomin:[0,3],depend:[0,1,4],depth:[0,5,6],deriv:[0,3],descend:[0,3],describ:[0,2,5,6,7],descric:[0,2],descript:[0,5,6],detail:[0,2,3,4,5,6,7],detect:[0,3,4,5,6],determin:[0,1,7],deviat:[0,1,3],devic:[0,2],dict:[0,1,2,3,4,5,6,7],dict_1:[0,3],dict_2:[0,3],dictionari:[0,2,3,7],diff_ab:[0,7],differ:[0,1,2,3,4,7],differenti:[0,2],digraph:0,dim_ord:[0,1],dimens:[0,1,2,3],dimension:[0,1,3],direct:[0,1,2],discoveri:[0,3],discret:[0,1,2,3],discretis:[0,2,3],discretise_max_:[0,3],discretise_method:[0,2],discretisemaxentropi:[0,3],discuss:8,disk:0,displai:0,display_edge_label:0,distanc:[0,2],distribut:[0,2,3,6,7],divid:[0,3],docstr:[0,5,6],document:[0,2,3,4,5,6,7],doe:[0,2,3],doi:[0,1,2,5,6],don:0,done:[0,3,6],dot:[0,7],dotdict:0,down:[0,3],dual_valu:0,due:[0,2],duplic:0,dynam:[0,1,2,8],e109462:[0,1],e16042161:[0,2,6],e68910:0,each:[0,1,2,3,4,5,6,7],eco:[0,2],edg:[0,7],effect:[0,4,5,7],effici:0,either:[0,2,3,5,6,7],embed:[0,1,2,4,5,6],empir:[0,2],empti:[0,1],engin:0,enough:[0,3],enter:[0,7],entri:[0,1,3,4,7],entropi:[0,1,2,3,6,7,8],entropy_x:0,equal:[0,2,3],equal_dict:[0,3],equival:[0,7],err:0,error:[0,2],est:0,establish:[0,1],estim:[1,3,4,5,6,7,8],estimate_parallel:[0,2],estimate_surrogates_analyt:[0,2],estimators_:[0,4,5,6],estimators_jidt:[2,8],estimators_opencl:[2,8],estimators_pid:[2,6,8],evenli:[0,3],everi:[0,2],exact:[0,2],exampl:[0,1,3,4,5,6],except:0,exclud:[0,5],exist:[0,1],expect:[0,1],experiment:[0,4],explan:0,exponenti:[0,2],export_brain_net_view:0,export_networkx_graph:0,export_networkx_source_graph:0,face:[0,4],fae:[0,1,5,6],fall:[0,1],fals:[0,1,2,3,5,6],fast:[0,2],faster:[0,3],fdr:[0,3,5,7],fdr_constant:[0,3],fdr_correct:[0,5,6],femal:[0,4],fewer:[0,7],field:[0,3],fieldtrip:0,fieldtriptoolbox:0,fifth:0,figur:0,file:0,file_nam:0,file_vers:0,find:[0,2,5,6],find_estim:0,first:[0,1,2,4],fit:[0,1],five:[0,1],fninf:[0,6],follow:[0,1],forc:[0,5,6],form:[0,1],format:[0,1,2],forth:[0,3],found:[0,5,6],four:[0,4,5],fourth:0,free:[0,5],freedom:[0,3],from:[0,1,2,3,4,5,6,7],front:[0,2,6],fsampl:0,ft_datatype_raw:0,ft_struct_nam:0,full:[0,3,5],further:[0,4,5,6],futur:[0,2],galusk:[0,6],gaussian:[0,1,2],gener:[0,1,3,7],generate_logistic_maps_data:[0,1],generate_mute_data:[0,1,5,6],generate_var_data:[0,1],genoves:[0,3],get:[0,1,7],get_adjacency_matrix:[0,7],get_analytic_distribut:[0,2],get_edge_list:0,get_realis:[0,1],get_significant_process:[0,7],get_single_process:[0,7],get_single_target:[0,7],get_target_delai:[0,7],get_target_sourc:[0,7],github:[0,2,3,8],give:[0,2],given:[0,1,2,3,7],glass:0,good:0,googl:8,gpu:[0,8],gpuid:[0,2],granger:[0,5,6],graph:0,grassberg:[0,2],greedi:0,group:[0,8],halv:[0,2],handl:0,hard:[0,2],has:[0,1,2,3,4,5,7],have:[0,1,2,3,4,5,6,7,8],hdf5:0,head:8,hehlotler:[0,3],hellother:[0,3],helper:8,henc:[0,2,5],here:[0,2],high:[0,2,7],higher:0,highest:[0,3,7],highest_protocol:0,histori:[0,2],history_sourc:[0,2],history_target:[0,2],hit:[0,2],hold:0,home:0,hopefulli:0,host:8,hous:[0,4],how:[0,2],howev:[0,2],http:[0,1,2,3,5,6],human:0,hypothesi:[0,2],i_1:[0,3],i_2:[0,3],i_list:0,i_x_i:0,i_x_yz:0,i_x_z:0,identifi:[0,3,7],idtxl:[1,2,3,4,5,6,7],idtxl_except:8,idtxl_io:8,idtxl_util:[3,8],idx:[0,1,5,6],idx_al:[0,3],idx_list:[0,1],idx_realis:[0,1],idx_singl:[0,3],ignor:[0,2],implement:[0,1,2,4],implicitli:[0,1],import_fieldtrip:0,import_matarrai:0,improv:[0,2],includ:[0,3,7],incom:[0,2],inconveni:0,increment:[0,2],ind:[0,1],indent:[0,3],independ:[0,2,4],index:[0,1,3,4,5,6,7,8],indic:[0,1,2,3,5,6,7],individu:[0,2,3,5,6,7],infer:[0,3,4,6,8],influenc:[0,5],infodynam:[0,3],infor:[0,2],inform:[0,1,3,4,7,8],initi:[0,2],initialis:[0,1],inner:[0,2,5],input:[0,2,3],ins:[0,6],insid:0,instanc:[0,1,2,3,4,5,6,7],instanti:[0,2],instead:[0,1,2,3,5,6],institut:[0,5],int32:[0,2],intact:[0,1],interact:[0,7],interfac:0,intermedi:[0,2],intern:0,is_analytic_null_estim:[0,2],is_parallel:[0,2],issu:8,iter:[0,5,6],its:[0,2,7],j_list:0,java:[0,2],jidt:[0,3,8],jidtdiscret:[0,2],jidtdiscreteai:[0,2],jidtdiscretecmi:[0,2],jidtdiscretemi:[0,2],jidtdiscretet:[0,2],jidtestim:[0,2],jidtgaussian:[0,2],jidtgaussianai:[0,2],jidtgaussiancmi:[0,2],jidtgaussianmi:[0,2],jidtgaussiant:[0,2],jidtkraskov:[0,2],jidtkraskovai:[0,2],jidtkraskovcmi:[0,2,5,6],jidtkraskovmi:[0,2],jidtkraskovt:[0,2],jidtoutofmemoryerror:[0,2],joint:[0,2,3,4,5],joseph:[0,2],jost:[0,2,6],journal:[0,1],jpackag:[0,2],jpype:[0,2],keep:[0,1,2],kei:[0,3],keyword:[0,7],knn:[0,2],kraskov:[0,2],kraskov_k:[0,2],ksg:[0,2],kwarg:0,label:0,labl:0,lag:[0,1,2,5,6,7],lag_mi:[0,2],lags_pid:[0,6],larger:[0,2],last:[0,3],later:0,latter:[0,2],lazar:[0,3],len:[0,3],length:[0,1,3,6],les:0,lett:[0,2,5],level:[0,2,3,4,5,6],like:[0,7],limit:[0,2],lindner:[0,5],line:[0,4],linear:[0,1],link:[0,3,4,5,7],link_a:[0,4],link_b:[0,4],list:[0,1,3,4,5,6,7],list_estim:0,lizier:[0,2,3,5,6],load:0,load_pickl:0,local:[0,1,2,6],local_valu:[0,2],locat:0,logic:[0,3],logical_xor:[0,6],logist:[0,1],longer:0,look:[0,7,8],loop:[0,2],loos:[0,1],lowest:[0,3],machin:[0,2],made:[0,3],mai:[0,2,7],make:[0,2,3],makkeh:[0,2],male:[0,4],mani:[0,2],manual:0,map:[0,1,3],marg_xi:0,marg_xz:0,marginal_xi:0,marginal_xz:0,marinazzo:[0,1],mass:[0,2],mat:0,match:[0,4],matlab:[0,1],matplotlib:0,matric:[0,1],matrix:[0,1,7],matrixutil:[0,3],max:[0,1,3,5],max_ent:[0,2],max_it:[0,2,6],max_lag:[0,5,6],max_lag_sourc:[0,5],max_lag_target:[0,5],max_p:[0,7],max_p_lag:[0,7],max_seq:[0,5],max_shift:[0,1],max_stat:[0,5,6],max_statist:[0,3],max_statistic_sequenti:[0,3],max_statistic_sequential_bivari:[0,3],max_t:[0,7],max_te_lag:[0,7],max_unsuc_swaps_row_parm:[0,2,6],maximis:[0,5,6],maximum:[0,1,2,3,5,6,7],measur:[0,2,5,6,7],mem:[0,2],memori:0,messag:0,method:[0,1,2,3,4,5,6,7],mi_against_surrog:[0,3],mi_omnibu:[0,5],mi_sign_sourc:[0,5],mikhail:[0,2],min:[0,3],min_lag:[0,5],min_lag_sourc:[0,5],min_stat:[0,5,6],min_statist:[0,3],minimum:[0,3,5],mis:[0,5],miss:0,mmi:8,mni:0,mni_coord:0,model:[0,1,5],modul:[2,4,5,6,8],montalto:[0,1],more:[0,2,5,6,8],mpg:[0,5],mte:8,multi:[0,3],multipl:[0,1,2,4,6,7],multipli:[0,3],multivar:0,multivari:[0,1,2,3,4,6,7,8],multivariate_mi:[5,8],multivariate_t:[5,8],multivariatemi:[0,5],multivariatet:[0,3,5,7],must:[0,1,2,3,6],mute:[0,1],mutual:[0,2,3,6,8],n_chunk:[0,2],n_discrete_bin:[0,2],n_edg:0,n_node:[0,7],n_perm:[0,2,3],n_perm_:[0,5,6],n_perm_comp:[0,4],n_perm_max_seq:[0,3,5],n_perm_max_stat:[0,3,5,6],n_perm_mi:[0,3],n_perm_min_stat:[0,3,5,6],n_perm_omnibu:[0,3,5],n_process:[0,1],n_realis:[0,1,7],n_realisations_repl:[0,1],n_realisations_sampl:[0,1],n_replic:[0,1],n_sampl:[0,1],name:0,nearest:[0,2],nearli:[0,2],necessari:[0,1],need:[0,2],neighborhood:[0,2],neighbour:[0,2],network:[0,1,3,6,8],network_a:[0,4],network_analysi:[5,6,8],network_b:[0,4],network_comparison:[4,8],network_fdr:[0,3,5,7],network_infer:8,network_set_a:[0,4],network_set_b:[0,4],networkanalysi:0,networkcomparison:[0,4],networkinfer:0,networkinferencebivari:0,networkinferencemi:0,networkinferencemultivari:0,networkinferencet:0,networkx:0,neural:[0,1,6],neuroimag:[0,3],neuroinf:[0,6],neurophysiolog:0,neurosci:[0,5],never:[0,2],next:[0,2],nichol:[0,3],nitrc:0,node:[0,3,5,8],node_color:0,node_s:0,nois:[0,1,2],noise_level:[0,2],noise_std:[0,1],nollo:[0,5,6],non:[0,1,3,5,6],none:[0,1,2,3],nonlinear:[0,5,6],nonneg:[0,6],nonuniform:[0,5,6],normalis:[0,1,2,6,7],notat:[0,7],note:[0,1,2,3,4,5,6,7],novel:[0,1],now:[0,3],num_rep:[0,2,6],num_thread:[0,2],number:[0,1,2,3,4,5,6,7],numbin:[0,3],numer:[0,2],numpi:[0,1,2,3,4,5,7],obj:0,object:[0,1,2,3,4],observ:[0,2,4,5],obtain:[0,3],occur:0,offer:0,olbrich:[0,2,6],old:[0,3],omnibu:[0,3,5],omnibus_pv:0,omnibus_sign:0,omnibus_t:0,omnibus_test:[0,3],onc:[0,2],one:[0,2,3,4,6],onli:[0,1,2,3,5],opencl:[0,8],openclkraskov:[0,2],openclkraskovcmi:[0,2],openclkraskovmi:[0,2],oppos:[0,2],optim:[0,2],option:[0,1,2,3,4,5,6,7],order:[0,1,3],org:[0,1,2,5,6],orgini:[0,1],origin:[0,1,2,3],other:[0,3,5,6],otherwis:[0,3],our:[0,2],out:0,outer:[0,2],outofmemoryexcept:0,output:[0,2,4,5,6,7],outsid:[0,2],over:[0,1,2,3,4,5],overwrit:[0,1,2],own:[0,5,6],p_valu:[0,3],p_vidx:0,packag:2,package_miss:0,page:[0,3,8],pair:[0,5,6],paper:[0,1,3],parallel:[0,1,2,3],paramet:[0,2,3,4,5,6],parent:[0,2,7],part:[0,4],partial:[0,1,2,3,7,8],partial_information_decomposit:[3,6,8],partialinformationdecomposit:[0,6],partic:[0,2],particip:[0,4],particular:[0,3],partit:[0,3],pass:[0,2,3,4],past:[0,2,3,4,5,6,7],path:0,patient:[0,4],pattern:[0,1],pdf:[0,5],pdf_dirti:0,per:[0,1,2,3],perform:[0,2,3,5,6],performancetip:[0,3],perm_rang:[0,1],perm_set:[0,1],perm_typ:[0,1],permut:[0,1,2,3,4,5,6],permute_in_tim:[0,3,4,5,6],permute_repl:[0,1],permute_sampl:[0,1,4,5,6],permutet:[0,1],perspect:[0,2],phy:[0,2,5,6],physrev:[0,5,6],physrevlett:[0,5],pickl:0,pid:[0,3,7,8],pid_analysi:[0,6],pid_calc_nam:[0,6],pid_estim:[0,6],pipa:[0,5],pl00007990:[0,1],planck:[0,5],platform:[0,2],plo:[0,1],plot:0,plot_mute_graph:0,plot_network:0,plot_network_comparison:0,plot_selected_var:0,plug:[0,2],point:[0,1,2,3,7],pointless:[0,3],pone:[0,1],porta:[0,5,6],possibl:[0,2,3],potenti:[0,5],power:[0,3],practic:[0,2],predict:[0,3],preprint2012_25:[0,5],preprint:[0,5],present:[0,3],pretti:[0,3],previous:[0,5,6],priesemann:[0,6],print:[0,2,3,7],print_dict:[0,3],print_edge_list:[0,7],print_matrix:0,printer:[0,3],probabl:[0,2],problem:8,proc:[0,1],process:[0,1,2,3,4,5,6,7],process_set:[0,6],processes_analys:[0,7],produc:0,program:[0,2],project:0,prokopenko:[0,2,6],properti:[0,2,7],propos:[0,1,2],protocol:0,provid:[0,1,2,3,4,7],provide_margin:0,prune:[0,3,5,6],psr:[0,1],pval:[0,7],pvalu:[0,5,6,7],pvalue_omnibu:[0,5],pvalues_sign_sourc:[0,5],pypi:[0,2],python3:0,python:[0,2,3],q_vidx:0,qualit:0,quantifi:[0,2,6],r_vidx:0,rais:[0,1,2,3],randint:[0,6],random:[0,1,2,6],rang:[0,1,2,3],rank:[0,3],rate:[0,3],rauh:[0,2,6],raw:[0,1,2,3,4,5,6],re_us:0,read:0,realis:[0,1,2,3,5,6],realisatin:0,realiz:[0,2],record:[0,4],reduc:0,refer:[0,1,2,3,5,6],regard:[0,7],regular:0,relationship:[0,2],relev:[0,3,5,6],remain:[0,3],reman:[0,3],remanin:[0,3],remov:[0,2,3],remove_column:[0,3],remove_row:[0,3],repeat:[0,3],repl:[0,1],replic:[0,1,2,3,4,5,6],report:[0,8],repres:[0,1,2,3,7],request:[0,1,3],requir:[0,2,3],res_network:[0,7],res_pid:[0,7],reshap:[0,1],respect:[0,2,5],restrict:[0,3],result:[2,3,4,5,6,8],resultsnetworkanalysi:0,resultsnetworkcomparison:[0,4,7],resultsnetworkinfer:[0,3,5,7],resultspartialinformationdecomposit:[0,6,7],resultssingleprocessanalysi:[0,3,6,7],retriev:[0,5,6],return_calc:[0,2],return_count:[0,2],rev:[0,2,5,6],robot:[0,2],round:[0,3],routin:0,row:[0,2,3],rubinov:[0,5],run:[0,2],s10827:[0,5],s1_unq:[0,7],s2_unq:[0,7],same:[0,1,2,3,4,5,6],sameshima:[0,1],sampl:[0,1,2,3,5,6,7],save:[0,2,3],save_pickl:0,scheme:[0,1],schreiber:[0,2,5],sci:[0,2,6],scipi:[0,3],search:[0,2,5,6,8],second:[0,2,3,4],see:[0,2,3,4,5,6,7],select:[0,3,4,5],selected_sources_pv:0,selected_sources_t:0,selected_var:[0,7],selected_vars_ful:[0,5,6],selected_vars_sourc:[0,5,7],selected_vars_target:[0,5,7],self:0,separ:[0,3,5],separate_arrai:[0,3],sequenti:[0,3],seri:[0,1,2],serial:0,set:[0,1,2,3,4,5,6,7],set_data:[0,1],setup:[0,3],sever:[0,1],shape:[0,3],share:[0,2,3,6,7],shd_s1_s2:[0,7],shift:[0,1],should:[0,2,3],show:0,shuffl:[0,1,3,4,5,6],side:[0,4],sign:[0,6],sign_ominbu:[0,5],sign_sourc:0,signal:0,signific:[0,3,4,5,6,7],significantli:[0,3],similar:[0,2],simul:[0,1],singl:[0,3,4,5,6,7],single_process_analysi:8,singleprocessanalysi:0,singleton:0,size:[0,1,2],slice:[0,1],slice_permute_repl:[0,1],slice_permute_sampl:[0,1],small:[0,1,3],smaller:[0,2,3],smallest:[0,7],soft:[0,2],softwar:0,solv:0,solve_w_eco:0,solver:[0,2],solver_arg:[0,2],some:[0,2],sort:[0,3],sort_descend:[0,3],sortind:[0,3],sourc:[0,1,2,3,4,5,6,7],source_1:[0,7],source_2:[0,7],source_set:[0,5],source_target_delai:[0,2],sources_test:0,space:[0,2,5,6],specif:[0,7],specifi:[0,1,5,6,7],spr:[0,1],squar:[0,1],squeez:0,stage:[0,2],stai:[0,1],stamp:0,standard:[0,1,3],standardis:[0,1,2,3,7],start:[0,1],stat:[5,6,7,8],state:[0,2,6,7],statis:[0,3],statist:[0,1,3,4,5,6,7],statistic_omnibu:[0,5],statistic_sign_sourc:[0,5],stats_typ:[0,4],step:[0,5,6],stochast:[0,1,7],stoegbauer:[0,2],stop:[0,3],storag:[0,2,3,7,8],store:[0,1,7],str:[0,1,2,4,5,6,7],strategi:[0,1],string:[0,1,3,5,6],structur:[0,1],studi:[0,2],style:0,subject:[0,4],subplot:0,subset:[0,3,6],suffici:[0,1],sum_i:[0,3],support:[0,2],surrog:[0,1,2,3,4,5,6,7],surrogate_distribut:[0,7],swap:[0,1,2,3],swap_char:[0,3],sydneypid:[0,2,6],syn_s1_s2:[0,7],syn_shd_against_surrog:[0,3],synergist:[0,2,3,6,7],synergy_tartu:8,system:[0,2],tabl:[0,3],tail:[0,4],tail_comp:[0,4],take:[0,1],taken:[0,2,3],target:[0,2,3,4,5,6,7],targets_analys:[0,7],tartupid:[0,2],task:[0,4],tau:[0,2,6],tau_sourc:[0,2,5],tau_target:[0,2,5],te_max_candid:[0,3],te_min_candid:[0,3],technic:[0,2],techniqu:[0,5,6],tempor:[0,1,2,5,6],test:[0,1,3,4,5,6,7],text:0,than:[0,2,3],thei:[0,2],theiler:[0,2],theiler_t:[0,2],them:0,theoret:[0,3,7,8],theori:0,thi:[0,1,2,3,4,5,6,7],third:[0,2],thread:[0,2],three:[0,1,2,5,6],threshold:[0,3],through:[0,5,6],thu:[0,1],time:[0,1,2,3,4,5,6],toggl:[0,4,5,6],too:[0,1,2],tool:[0,6],toolbox:[0,1],toolkit:[0,2],total:[0,1,2,7],tracker:8,tranfer:[0,7],transfer:[0,1,2,3,4,7,8],treat:[0,5],trial:[0,1,2],tupl:[0,1,3,5,6,7],tutori:8,two:[0,1,2,3,4,5,6,7],type:[0,1,2,4,6],typeerror:[0,1],uncorrect:[0,7],uncorrel:[0,1],under:[0,2,4],understand:[0,6],unequ:[0,3],uniform:[0,2,5,6],union:[0,7],uniqu:[0,2,3,6,7],unit:[0,4],univari:[0,3],unq_against_surrog:[0,3],unsuccess:[0,2],until:[0,2],unweight:[0,7],upon:0,upper:[0,2],usag:[0,2],use:[0,2,3,4,6,7],use_al:[0,2],used:[0,1,2,3,4,5,6,7],user:[0,8],uses:[0,2,5],using:[0,1,2,3,5,6,7],util:[0,8],utilis:[0,2],valid:0,valu:[0,1,2,3,4,5,6,7],var1:[0,2],var2:[0,2],vari:[0,2],variabl:[0,1,2,3,4,5,6,7],variou:[0,1],vars_count:[0,7],vector:[0,1,3],verbos:[0,2,4,5,6],version:[0,2],via:[0,1,2,5,6,7],vicent:[0,2,5],viewer:0,virtualis:[0,2],visual:0,visualis:0,visualise_graph:8,vitrualis:[0,2],vstack:[0,6],wai:[0,7],wang:0,want:[0,8],warn:0,weight:[0,7],weight_typ:0,well:[0,2,3],were:[0,5,6,7],when:[0,1,2,3,5,6],where:[0,1,2,3,5,6],whether:[0,7],which:[0,1,2,3,4],whole:[0,3,4,5,6],wibral:[0,5,6],wiki:[0,3,8],william:[0,6],window:[0,2],wise:[0,1],within:[0,1,4],written:0,wrt:[0,5,6,7],www:[0,5],xia:0,you:[0,8],your:[0,2],zomaya:[0,2,6]},titles:["idtxl package","The Data Class","Information theoretic estimators","Helper functions","Network comparison","Algorithms for network inference","Algorithms for the analysis of node dynamics","The Results Class","Welcome to IDTxl\u2019s documentation!"],titleterms:{"class":[1,7],"function":3,AIS:6,The:[1,7],activ:6,active_information_storag:0,algorithm:[5,6],analysi:6,bivari:5,bivariate_mi:0,bivariate_t:0,bmi:5,bte:5,comparison:[4,7],content:[0,8],cpu:2,data:[0,1],decomposit:6,document:8,dynam:[6,7],entropi:5,estim:[0,2],estimators_jidt:0,estimators_opencl:0,estimators_pid:0,gpu:2,helper:3,idtxl:[0,8],idtxl_except:0,idtxl_io:0,idtxl_util:0,indic:8,infer:[5,7],inform:[2,5,6],jidt:2,mmi:5,modul:[0,3],mte:5,multivari:5,multivariate_mi:0,multivariate_t:0,mutual:5,network:[4,5,7],network_analysi:0,network_comparison:0,network_infer:0,node:[6,7],opencl:2,packag:[0,8],partial:6,partial_information_decomposit:0,pid:[2,6],result:[0,7],single_process_analysi:0,stat:[0,3],storag:6,synergy_tartu:0,tabl:8,theoret:2,transfer:5,util:3,visualise_graph:0,welcom:8}}) \ No newline at end of file