Skip to content
Patricia Wollstadt edited this page Oct 5, 2017 · 79 revisions

Welcome to the IDTxl wiki!

Installation

For more details read the Installation and Requirements page.

Your first Information Network Inference with IDTxl

You can test your installation of IDTxl and run your first Information Network Inference on a small simulated dataset.

# Import classes
from idtxl.multivariate_te import MultivariateTE
from idtxl.data import Data
from idtxl.visualise_graph import print_res_to_console, plot_network

# a) Generate test data
data = Data()
data.generate_mute_data(n_samples=1000, n_replications=5)

# b) Initialise analysis object and define settings
network_analysis = MultivariateTE() 
settings = {'cmi_estimator': 'JidtGaussianCMI',
            'max_lag_sources': 5,
            'min_lag_sources': 1}

# c) Run analysis
results = network_analysis.analyse_network(settings=settings, data=data)

# d) Plot inferred network to console and via matplotlib
print_res_to_console(data=data, res=results)
plot_network(res=results, n_nodes=data.n_processes)

In order to run a meaningful analysis on your dataset, make sure you understand the key theoretical concepts underlying IDTxl algorithms.

Theoretical background

Start with a short theoretical introduction before continuing to the tutorial below.

If you are looking for a full and detailed picture of the theoretical background, refer to the Literature.

Tutorials

Documentation

Refer to the Documentation for class structure, methods and parameters.

Developer's section

Misc

Clone this wiki locally