-
Notifications
You must be signed in to change notification settings - Fork 76
Home
Welcome to the IDTxl wiki!
For more details read the Installation and Requirements page.
You can test your installation of IDTxl and run your first Information Network Inference on a small simulated dataset.
# Import classes
from idtxl.multivariate_te import MultivariateTE
from idtxl.data import Data
from idtxl.visualise_graph import print_res_to_console, plot_network
# a) Generate test data
dat = Data()
dat.generate_mute_data(n_samples=1000, n_replications=5)
# b) Initialise analysis object and define analysis settings
network_analysis = MultivariateTE()
settings = {'cmi_estimator': 'JidtGaussianCMI',
'max_lag_sources': 5,
'min_lag_sources': 1}
# c) Run analysis on whole network
res = network_analysis.analyse_network(settings, dat)
# d) Plot inferred network to console and via matplotlib
print_res_to_console(dat, res)
plot_network(res=res, n_nodes=dat.n_processes)
In order to run a meaningful analysis on your dataset, make sure you understand the key theoretical concepts underlying IDTxl algorithms.
Start with a short theoretical introduction before continuing to the tutorial below.
If you are looking for a full and detailed picture of the theoretical background, refer to the Literature.
-
Algorithms for network inference
-
Multivariate Transfer Entropy / Granger causality
- Import data
- Define analysis settings
- Run analysis
- Plot inferred network
- networkx interface
-
Bivariate TE / Granger causality
-
-
Algorithms for node dynamics
- Active Information Storage
- Entropy
-
Core estimators
-
Input/Output
- MATLAB importer
- FieldTrip importer
- Neo importer
- Export networkx graph object
- Export to BrainNet viewer
-
- Coupled Autoregressive processes
- MuTE network
- Coupled Logistic maps
Refer to the Documentation for class structure, methods and parameters.
- Testing
- Package IDTXL
- Adding a new estimator to IDTxl
- Generate UML structure
- List of variable names