Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix deprecated float #23

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions BGlib/be/analysis/be_loop_fitter.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,17 +39,17 @@
'''
loop_metrics32 = np.dtype({'names': ['Area', 'Centroid x', 'Centroid y',
'Rotation Angle [rad]', 'Offset'],
'formats': [np.float32, np.float32, np.float32,
np.float32, np.float32]})
'formats': [float, float, float,
float, float]})

crit32 = np.dtype({'names': ['AIC_loop', 'BIC_loop', 'AIC_line', 'BIC_line'],
'formats': [np.float32, np.float32, np.float32,
np.float32]})
'formats': [float, float, float,
float]})

__field_names = ['a_0', 'a_1', 'a_2', 'a_3', 'a_4', 'b_0', 'b_1', 'b_2', 'b_3',
'R2 Criterion']
loop_fit32 = np.dtype({'names': __field_names,
'formats': [np.float32 for name in __field_names]})
'formats': [float for name in __field_names]})


class BELoopFitter(Fitter):
Expand Down Expand Up @@ -217,7 +217,7 @@ def _create_projection_datasets(self):

# Write datasets
self.h5_projected_loops = create_empty_dataset(self.h5_main,
np.float32,
float,
'Projected_Loops',
h5_group=self.h5_results_grp)

Expand Down Expand Up @@ -532,7 +532,7 @@ def _read_guess_chunk(self):
# TODO: avoid memory copies!
float_mat = np.zeros(shape=list(dc_rest_2d.shape) +
[len(loop_fit32.names)-1],
dtype=np.float32)
dtype=float)
if self.verbose and self.mpi_rank == 0:
print('Created empty float matrix of shape: {}'
'.'.format(float_mat.shape))
Expand Down Expand Up @@ -569,7 +569,7 @@ def _project_loop(sho_response, dc_offset):
ancillary : numpy.ndarray
Metrics for the loop projection
"""
# projected_loop = np.zeros(shape=sho_response.shape, dtype=np.float32)
# projected_loop = np.zeros(shape=sho_response.shape, dtype=float)
ancillary = np.zeros(shape=1, dtype=loop_metrics32)

pix_dict = projectLoop(np.squeeze(dc_offset),
Expand Down Expand Up @@ -683,7 +683,7 @@ def _unit_compute_guess(self):
print('Unzipping loop projection results')
loop_mets = np.zeros(shape=len(results), dtype=loop_metrics32)
proj_loops = np.zeros(shape=(len(results), self.data[0][0].shape[1]),
dtype=np.float32)
dtype=float)

if self.verbose and self.mpi_rank == 0:
print(
Expand Down Expand Up @@ -1302,7 +1302,7 @@ def _loop_fit_tree(tree, guess_mat, fit_results, vdc_shifted,
num_nodes = len(cluster_tree.nodes)

# prepare the guess and fit matrices
loop_guess_mat = np.zeros(shape=(num_nodes, 9), dtype=np.float32)
loop_guess_mat = np.zeros(shape=(num_nodes, 9), dtype=float)
# loop_fit_mat = np.zeros(shape=loop_guess_mat.shape, dtype=loop_guess_mat.dtype)
loop_fit_results = list(
np.arange(num_nodes, dtype=np.uint16)) # temporary placeholder
Expand Down
8 changes: 4 additions & 4 deletions BGlib/be/analysis/be_relax_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def __init__(self, h5_main, variables=None, fit_method='Exponential', sens=1, ph
self.write_dc_offset_values = self.all_dc_offset_values[::2]

#if there is only one RS spectrum
if type(self.write_dc_offset_values) == np.float32:
if type(self.write_dc_offset_values) == float:
self.write_dc_offset_values = [self.write_dc_offset_values]

if self.starts_with == 'read':
Expand All @@ -107,7 +107,7 @@ def __init__(self, h5_main, variables=None, fit_method='Exponential', sens=1, ph
np.argwhere(self.h5_main.h5_spec_vals[
0] == self.no_read_steps)]
# if there is only one RS spectrum
if type(self.write_dc_offset_values) == np.float32:
if type(self.write_dc_offset_values) == float:
self.write_dc_offset_values = [self.write_dc_offset_values]

self.no_read_offset = len(self.all_dc_offset_values) - self.no_rs_spectra
Expand Down Expand Up @@ -248,7 +248,7 @@ def _create_results_datasets(self):
results_units = 'pm'

berelaxfit32 = np.dtype({'names': field_names,
'formats': [np.float32 for name in field_names]})
'formats': [float for name in field_names]})
self.h5_results = usid.hdf_utils.write_main_dataset(self.h5_results_grp, results_shape, results_dset_name,
results_quantity, results_units, pos_dims, spec_dims,
dtype=berelaxfit32, h5_pos_inds=self.h5_main.h5_pos_inds,
Expand Down Expand Up @@ -292,7 +292,7 @@ def _write_results_chunk(self):
if self.fit_method == 'Logistic':
field_names = ['A', 'K', 'B', 'v', 'Q', 'C']
berelaxfit32 = np.dtype({'names': field_names,
'formats': [np.float32 for name in field_names]})
'formats': [float for name in field_names]})
# write and flush results
results = usid.io.dtype_utils.stack_real_to_compound(self._results, compound_type=berelaxfit32)
results = results.reshape(self.h5_results.shape[0], -1)
Expand Down
2 changes: 1 addition & 1 deletion BGlib/be/analysis/be_sho_fitter.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
_field_names = ['Amplitude [V]', 'Frequency [Hz]', 'Quality Factor',
'Phase [rad]', 'R2 Criterion']
sho32 = np.dtype({'names': _field_names,
'formats': [np.float32 for name in _field_names]})
'formats': [float for name in _field_names]})


class SHOGuessFunc(Enum):
Expand Down
26 changes: 13 additions & 13 deletions BGlib/be/analysis/utils/be_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,19 +18,19 @@
from scipy.special import erf, erfinv
import warnings

# switching32 = np.dtype([('V+', np.float32),
# ('V-', np.float32),
# ('Imprint', np.float32),
# ('R+', np.float32),
# ('R-', np.float32),
# ('Switchable Polarization', np.float32),
# ('Work of Switching', np.float32),
# ('Nucleation Bias 1', np.float32),
# ('Nucleation Bias 2', np.float32)])
# switching32 = np.dtype([('V+', float),
# ('V-', float),
# ('Imprint', float),
# ('R+', float),
# ('R-', float),
# ('Switchable Polarization', float),
# ('Work of Switching', float),
# ('Nucleation Bias 1', float),
# ('Nucleation Bias 2', float)])
field_names = ['V+', 'V-', 'Imprint', 'R+', 'R-', 'Switchable Polarization',
'Work of Switching', 'Nucleation Bias 1', 'Nucleation Bias 2']
switching32 = np.dtype({'names': field_names,
'formats': [np.float32 for name in field_names]})
'formats': [float for name in field_names]})


###############################################################################
Expand Down Expand Up @@ -309,7 +309,7 @@ def loop_fit_jacobian(vdc, coef_vec):
vdc = np.squeeze(np.array(vdc))
num_steps = vdc.size

J = np.zeros([num_steps, 9], dtype=np.float32)
J = np.zeros([num_steps, 9], dtype=float)

V1 = vdc[:int(num_steps / 2)]
V2 = vdc[int(num_steps / 2):]
Expand Down Expand Up @@ -602,8 +602,8 @@ def intersection(L1, L2):
return intersection(line(A, B), line(C, D))

# start and end coordinates of each line segment defining the convex hull
outline_1 = np.zeros((hull.simplices.shape[0], 2), dtype=np.float)
outline_2 = np.zeros((hull.simplices.shape[0], 2), dtype=np.float)
outline_1 = np.zeros((hull.simplices.shape[0], 2), dtype=float)
outline_2 = np.zeros((hull.simplices.shape[0], 2), dtype=float)
for index, pair in enumerate(hull.simplices):
outline_1[index, :] = points[pair[0]]
outline_2[index, :] = points[pair[1]]
Expand Down
22 changes: 11 additions & 11 deletions BGlib/be/translators/be_odf.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,7 @@ def translate(self, file_path, show_plots=True, save_plots=True,
UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
UDVS_units = ['', 'V', 'A', '', '', '']
UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
dtype=np.float32).reshape(1, len(UDVS_labs))
dtype=float).reshape(1, len(UDVS_labs))

old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Expand All @@ -396,20 +396,20 @@ def translate(self, file_path, show_plots=True, save_plots=True,
band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
bin_freqs = np.linspace(st_f, en_f, bins_per_step, dtype=np.float32)
bin_freqs = np.linspace(st_f, en_f, bins_per_step, dtype=float)

if verbose:
print('\tGenerating BE arrays of length: '
'{}'.format(bins_per_step))
bin_inds = np.zeros(shape=bins_per_step, dtype=np.int32)
bin_FFT = np.zeros(shape=bins_per_step, dtype=np.complex64)
ex_wfm = np.zeros(shape=bins_per_step, dtype=np.float32)
ex_wfm = np.zeros(shape=bins_per_step, dtype=float)

# Forcing standardized datatypes:
bin_inds = np.int32(bin_inds)
bin_freqs = np.float32(bin_freqs)
bin_freqs = float(bin_freqs)
bin_FFT = np.complex64(bin_FFT)
ex_wfm = np.float32(ex_wfm)
ex_wfm = float(ex_wfm)

self.FFT_BE_wave = bin_FFT

Expand Down Expand Up @@ -711,8 +711,8 @@ def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)

self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=float)
self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=float)

numpix = self.h5_raw.shape[0]
"""
Expand Down Expand Up @@ -945,7 +945,7 @@ def _read_secondary_channel(self, h5_meas_group, aux_file_path):
h5_pos_vals=self.h5_raw.h5_pos_vals,
h5_spec_inds=h5_current_spec_inds,
h5_spec_vals=h5_current_spec_values,
dtype=np.float32, # data type / precision
dtype=float, # data type / precision
main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9},
verbose=self._verbose)

Expand All @@ -961,7 +961,7 @@ def _read_secondary_channel(self, h5_meas_group, aux_file_path):
spectral_len = spectral_len // 2

# calculate the # positions that can be stored in memory in one go.
b_per_position = np.float32(0).itemsize * spectral_len
b_per_position = np.dtype('float32').itemsize * spectral_len

max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

Expand Down Expand Up @@ -1565,7 +1565,7 @@ def translate_val(target, strvals, numvals):
'wave_type', 'wave_mod', 'in-field',
'out-of-field']
UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']
udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=float)

udvs_table[:, 0] = np.arange(0, num_VS_steps) # Python base 0
udvs_table[:, 1] = UD_dc_vec
Expand Down Expand Up @@ -1606,7 +1606,7 @@ def translate_val(target, strvals, numvals):
UD_dc_vec = VS_offset * np.ones(num_VS_steps)
UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'forward', 'reverse']
UD_VS_table_unit = ['', 'V', 'A', '', '', 'A', 'A']
udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=float)
udvs_table[:, 0] = np.arange(1, num_VS_steps + 1)
udvs_table[:, 1] = UD_dc_vec
udvs_table[:, 2] = vs_amp_vec
Expand Down
16 changes: 8 additions & 8 deletions BGlib/be/translators/be_odf_relaxation.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,13 +115,13 @@ def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=Fa
band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
bin_freqs = np.linspace(st_f, en_f, len(bin_inds), dtype=np.float32)
bin_freqs = np.linspace(st_f, en_f, len(bin_inds), dtype=float)

# Forcing standardized datatypes:
bin_inds = np.int32(bin_inds)
bin_freqs = np.float32(bin_freqs)
bin_freqs = float(bin_freqs)
bin_FFT = np.complex64(bin_FFT)
ex_wfm = np.float32(ex_wfm)
ex_wfm = float(ex_wfm)

self.FFT_BE_wave = bin_FFT

Expand Down Expand Up @@ -188,7 +188,7 @@ def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=Fa
udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))
h5_UDVS = chan_grp.create_dataset('UDVS',
data=UDVS_mat,
dtype=np.float32)
dtype=float)
write_simple_attrs(h5_UDVS, {'labels': UDVS_labs, 'units': UDVS_units})

h5_bin_steps = chan_grp.create_dataset('Bin_Steps',
Expand All @@ -206,7 +206,7 @@ def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=Fa
dtype=np.uint32)
h5_bin_freq = chan_grp.create_dataset('Bin_Frequencies',
data=bin_freqs,
dtype=np.float32)
dtype=float)
h5_bin_FFT = chan_grp.create_dataset('Bin_FFT',
data=bin_FFT,
dtype=np.complex64)
Expand Down Expand Up @@ -262,8 +262,8 @@ def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=Fa
compression='gzip')

self.mean_resp = np.zeros(shape=(self.ds_main.shape[1]), dtype=np.complex64)
self.max_resp = np.zeros(shape=(self.ds_main.shape[0]), dtype=np.float32)
self.min_resp = np.zeros(shape=(self.ds_main.shape[0]), dtype=np.float32)
self.max_resp = np.zeros(shape=(self.ds_main.shape[0]), dtype=float)
self.min_resp = np.zeros(shape=(self.ds_main.shape[0]), dtype=float)

# Now read the raw data files:
self._read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict)
Expand Down Expand Up @@ -594,7 +594,7 @@ def translateVal(target, strvals, numvals):
num_VS_steps = total_steps * 2 # To account for IF and OOF

UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'in-field', 'out-of-field']
UD_VS_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
UD_VS_table = np.zeros(shape=(num_VS_steps, 7), dtype=float)
UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']

UD_VS_table[:, 0] = np.arange(0, num_VS_steps) # Python base 0
Expand Down
2 changes: 1 addition & 1 deletion BGlib/be/translators/beps_data_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -564,7 +564,7 @@ def _calc_sho(self, coef_OF_mat, coef_IF_mat, amp_noise=0.1, phase_noise=0.1, q_
sho_if_inds = sho_field == 1

# determine how many pixels can be read at once
mem_per_pix = vdc_vec.size * np.float32(0).itemsize
mem_per_pix = vdc_vec.size * float(0).itemsize
#free_mem = self.max_ram - vdc_vec.size * vdc_vec.dtype.itemsize * 6
free_mem = 1024
batch_size = int(free_mem / mem_per_pix)
Expand Down
Loading
Loading