-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresize.py
62 lines (47 loc) · 1.81 KB
/
resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import typer
import cv2
import supervision as sv
from ultralytics import YOLO
import pyresearch
# Define the path to the weights file
model = YOLO("last.pt")
app = typer.Typer()
def process_webcam(output_file="output.mp4"):
cap = cv2.VideoCapture("demo.mp4") # Replace with 0 for the default webcam
if not cap.isOpened():
print("Error: Could not open video file.")
return
# Get the fps of the input video
fps = cap.get(cv2.CAP_PROP_FPS)
# Define the codec and create VideoWriter object with 640x640 resolution
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Use 'XVID' for .avi
out = cv2.VideoWriter(output_file, fourcc, fps, (1080, 1080))
bounding_box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator()
while True:
ret, frame = cap.read()
if not ret:
break
# Resize the frame to 640x640
frame = cv2.resize(frame, (1080 , 1080))
# Get detections from the YOLO model
results = model(frame)[0]
detections = sv.Detections.from_ultralytics(results)
# Annotate the frame
annotated_frame = bounding_box_annotator.annotate(scene=frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
# Write the annotated frame to the output file
out.write(annotated_frame)
# Display the frame
cv2.imshow("Webcam", annotated_frame)
if cv2.waitKey(25) & 0xFF == ord("q"):
break
cap.release()
out.release()
cv2.destroyAllWindows()
@app.command()
def webcam(output_file: str = "output.mp4"):
typer.echo("Starting webcam processing...")
process_webcam(output_file)
if __name__ == "__main__":
app()