Skip to content

pythonandml/Dual-numbers-and-automatic-differentiation-using-Python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Dual numbers and automatic differentiation using Python

GitHub license GitHub issues

Implemented the forward mode of automatic differentiation with the help of dual numbers. We first implemented a class Dual with the constructor init, the functions add, radd, sub, rsub, mul, rmul, truediv, rtruediv, neg and pow. As the names suggest, those functions and properties implement basic arithmetic operations for Dual numbers:

init : constructor that initialises an object of class Dual. Each object represents a dual number a+εb with real component a (self.real) and dual component b (self.dual).

add : adds an argument argument to the dual number, i.e. a + εb + argument.

radd : adds the dual number to the argument argument, i.e. argument + a + εb.

sub : subtracts an argument argument from the dual number.

rsub : subtracts the dual number from the argument argument.

mul : multiplies the dual number with the argument argument.

rmul : multiplies an argument argument with the dual number.

truediv : divides the dual number by an argument argument.

rtruediv : divides the argument argument by the dual number.

neg : returns the negative of the dual number a + εb, i.e. -a - εb.

pow : takes the power-th power of the dual number. i.e. (a + εb)power

Next, we implemented the following functions that are acting on dual numbers of the form a+εb:

log_d : log(a+εb)

exp_d : exp(a+εb)

sin_d : sin(a+εb)

cos_d : cos(a+εb)

sigmoid_d : 1/1+exp(−(a+εb))

Dependencies

  • Numpy (pip install numpy)

Utilities

Once the installation is finished (downloading or cloning the files), go to the dual folder and follow the below simple guidelines to execute Dual class effectively (either write the code in command line or in a python editor with the name say main.py) OR you can also follow the jupyter notebook with the name dual.ipynb.

>>> import numpy as np
>>> from ad_dual import Dual

Next, import the functions (not necessarily all the functions but the one you need) using:

>>> from func import log_d, exp_d, sin_d, cos_d, sigmoid_d

Example-1

eg1

At x=1 and y=2,

f = 1, fx = -13, fy = 4

x = Dual(real=1, dual={'x': 1})
y = Dual(real=2, dual={'y': 1})

f = (x**3) - 2*(x**2)*(y**2) + (y**3)
print(f)

You will see the following output:

f = 1
fx = -13
fy = 4

Example-2

eg2

At x=2 and y=4,

f = 9, fx = 4, fy = -4

x = Dual(real=2, dual={'x': 1})
y = Dual(real=4, dual={'y': 1})
f = 81*x / (x+(y**2))
print(f)

You will see the following output:

f = 9.0
fx = 4.0
fy = -4.0

Example-3

eg2

At x=1, y=2 and z=1,

f = 6, fx = 5, fy = -4, fz = 4

x = Dual(1, {'x': 1})
y = Dual(2, {'y': 1})
z = Dual(1, {'z': 1})

f = 36*x*z / (x+(z**2)+(y**2))
print(f)

You will see the following output:

f = 6.0
fx = 5.0
fz = 4.0
fy = -4.0

Example-4

eg2

At x=π and y=π,

f = 0, fx = 1/(1-π2) = −0.112744, fy = 0

x = Dual(np.pi, {'x': 1})
y = Dual(np.pi, {'y': 1})

f = sin_d(x)/(cos_d(y)+(x**2))
print(f)

You will see the following output:

f = 0.0
fx = -0.112745
fy = 0.0

About

Implemented the forward mode of automatic differentiation with the help of dual numbers using Python.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 69.7%
  • Python 30.3%