Author: Anthony Shoumikhin
In the Running an ExecuTorch Model in C++ Tutorial, we explored the lower-level ExecuTorch APIs for running an exported model. While these APIs offer zero overhead, great flexibility, and control, they can be verbose and complex for regular use. To simplify this and resemble PyTorch's eager mode in Python, we introduce the Module
facade APIs over the regular ExecuTorch runtime APIs. The Module
APIs provide the same flexibility but default to commonly used components like DataLoader
and MemoryAllocator
, hiding most intricate details.
Let's see how we can run the SimpleConv
model generated from the Exporting to ExecuTorch tutorial using the Module
and TensorPtr
APIs:
#include <executorch/extension/module/module.h>
#include <executorch/extension/tensor/tensor.h>
using namespace ::executorch::extension;
// Create a Module.
Module module("/path/to/model.pte");
// Wrap the input data with a Tensor.
float input[1 * 3 * 256 * 256];
auto tensor = from_blob(input, {1, 3, 256, 256});
// Perform an inference.
const auto result = module.forward(tensor);
// Check for success or failure.
if (result.ok()) {
// Retrieve the output data.
const auto output = result->at(0).toTensor().const_data_ptr<float>();
}
The code now boils down to creating a Module
and calling forward()
on it, with no additional setup. Let's take a closer look at these and other Module
APIs to better understand the internal workings.
Creating a Module
object is a fast operation that does not involve significant processing time or memory allocation. The actual loading of a Program
and a Method
happens lazily on the first inference unless explicitly requested with a dedicated API.
Module module("/path/to/model.pte");
To force-load the Module
(and thus the underlying ExecuTorch Program
) at any time, use the load()
function:
const auto error = module.load();
assert(module.is_loaded());
To force-load a particular Method
, call the load_method()
function:
const auto error = module.load_method("forward");
assert(module.is_method_loaded("forward"));
You can also use the convenience function to load the forward
method:
const auto error = module.load_forward();
assert(module.is_method_loaded("forward"));
Note: The Program
is loaded automatically before any Method
is loaded. Subsequent attempts to load them have no effect if a previous attempt was successful.
Get a set of method names that a Module
contains using the method_names()
function:
const auto method_names = module.method_names();
if (method_names.ok()) {
assert(method_names->count("forward"));
}
Note: method_names()
will force-load the Program
when called for the first time.
To introspect miscellaneous metadata about a particular method, use the method_meta()
function, which returns a MethodMeta
struct:
const auto method_meta = module.method_meta("forward");
if (method_meta.ok()) {
assert(method_meta->name() == "forward");
assert(method_meta->num_inputs() > 1);
const auto input_meta = method_meta->input_tensor_meta(0);
if (input_meta.ok()) {
assert(input_meta->scalar_type() == ScalarType::Float);
}
const auto output_meta = method_meta->output_tensor_meta(0);
if (output_meta.ok()) {
assert(output_meta->sizes().size() == 1);
}
}
Note: method_meta()
will also force-load the Method
the first time it is called.
Assuming the Program
's method names and their input format are known ahead of time, you can run methods directly by name using the execute()
function:
const auto result = module.execute("forward", tensor);
For the standard forward()
method, the above can be simplified:
const auto result = module.forward(tensor);
Note: execute()
or forward()
will load the Program
and the Method
the first time they are called. Therefore, the first inference will take longer, as the model is loaded lazily and prepared for execution unless it was explicitly loaded earlier.
You can set individual input and output values for methods with the following APIs.
Inputs can be any EValue
, which includes tensors, scalars, lists, and other supported types. To set a specific input value for a method:
module.set_input("forward", input_value, input_index);
input_value
is anEValue
representing the input you want to set.input_index
is the zero-based index of the input to set.
For example, to set the first input tensor:
module.set_input("forward", tensor_value, 0);
You can also set multiple inputs at once:
std::vector<runtime::EValue> inputs = {input1, input2, input3};
module.set_inputs("forward", inputs);
Note: You can skip the method name argument for the forward()
method.
By pre-setting all inputs, you can perform an inference without passing any arguments:
const auto result = module.forward();
Or just setting and then passing the inputs partially:
// Set the second input ahead of time.
module.set_input(input_value_1, 1);
// Execute the method, providing the first input at call time.
const auto result = module.forward(input_value_0);
Note: The pre-set inputs are stored in the Module
and can be reused multiple times for the next executions.
Don't forget to clear or reset the inputs if you don't need them anymore by setting them to default-constructed EValue
:
module.set_input(runtime::EValue(), 1);
Only outputs of type Tensor can be set at runtime, and they must not be memory-planned at model export time. Memory-planned tensors are preallocated during model export and cannot be replaced.
To set the output tensor for a specific method:
module.set_output("forward", output_tensor, output_index);
output_tensor
is anEValue
containing the tensor you want to set as the output.output_index
is the zero-based index of the output to set.
Note: Ensure that the output tensor you're setting matches the expected shape and data type of the method's output.
You can skip the method name for forward()
and the index for the first output:
module.set_output(output_tensor);
Note: The pre-set outputs are stored in the Module
and can be reused multiple times for the next executions, just like inputs.
Most of the ExecuTorch APIs return either Result
or Error
types:
-
Error
is a C++ enum containing valid error codes. The default isError::Ok
, denoting success. -
Result
can hold either anError
if the operation fails, or a payload such as anEValue
wrapping aTensor
if successful. To check if aResult
is valid, callok()
. To retrieve theError
, useerror()
, and to get the data, useget()
or dereference operators like*
and->
.
Use ExecuTorch Dump to trace model execution. Create an ETDumpGen
instance and pass it to the Module
constructor. After executing a method, save the ETDump
data to a file for further analysis:
#include <fstream>
#include <memory>
#include <executorch/extension/module/module.h>
#include <executorch/devtools/etdump/etdump_flatcc.h>
using namespace ::executorch::extension;
Module module("/path/to/model.pte", Module::LoadMode::MmapUseMlock, std::make_unique<ETDumpGen>());
// Execute a method, e.g., module.forward(...); or module.execute("my_method", ...);
if (auto* etdump = dynamic_cast<ETDumpGen*>(module.event_tracer())) {
const auto trace = etdump->get_etdump_data();
if (trace.buf && trace.size > 0) {
std::unique_ptr<void, decltype(&free)> guard(trace.buf, free);
std::ofstream file("/path/to/trace.etdump", std::ios::binary);
if (file) {
file.write(static_cast<const char*>(trace.buf), trace.size);
}
}
}
The Module
APIs provide a simplified interface for running ExecuTorch models in C++, closely resembling the experience of PyTorch's eager mode. By abstracting away the complexities of the lower-level runtime APIs, developers can focus on model execution without worrying about the underlying details.