Skip to content

Latest commit

 

History

History
245 lines (158 loc) · 8.57 KB

extension-module.md

File metadata and controls

245 lines (158 loc) · 8.57 KB

Running an ExecuTorch Model Using the Module Extension in C++

Author: Anthony Shoumikhin

In the Running an ExecuTorch Model in C++ Tutorial, we explored the lower-level ExecuTorch APIs for running an exported model. While these APIs offer zero overhead, great flexibility, and control, they can be verbose and complex for regular use. To simplify this and resemble PyTorch's eager mode in Python, we introduce the Module facade APIs over the regular ExecuTorch runtime APIs. The Module APIs provide the same flexibility but default to commonly used components like DataLoader and MemoryAllocator, hiding most intricate details.

Example

Let's see how we can run the SimpleConv model generated from the Exporting to ExecuTorch tutorial using the Module and TensorPtr APIs:

#include <executorch/extension/module/module.h>
#include <executorch/extension/tensor/tensor.h>

using namespace ::executorch::extension;

// Create a Module.
Module module("/path/to/model.pte");

// Wrap the input data with a Tensor.
float input[1 * 3 * 256 * 256];
auto tensor = from_blob(input, {1, 3, 256, 256});

// Perform an inference.
const auto result = module.forward(tensor);

// Check for success or failure.
if (result.ok()) {
  // Retrieve the output data.
  const auto output = result->at(0).toTensor().const_data_ptr<float>();
}

The code now boils down to creating a Module and calling forward() on it, with no additional setup. Let's take a closer look at these and other Module APIs to better understand the internal workings.

APIs

Creating a Module

Creating a Module object is a fast operation that does not involve significant processing time or memory allocation. The actual loading of a Program and a Method happens lazily on the first inference unless explicitly requested with a dedicated API.

Module module("/path/to/model.pte");

Force-Loading a Method

To force-load the Module (and thus the underlying ExecuTorch Program) at any time, use the load() function:

const auto error = module.load();

assert(module.is_loaded());

To force-load a particular Method, call the load_method() function:

const auto error = module.load_method("forward");

assert(module.is_method_loaded("forward"));

You can also use the convenience function to load the forward method:

const auto error = module.load_forward();

assert(module.is_method_loaded("forward"));

Note: The Program is loaded automatically before any Method is loaded. Subsequent attempts to load them have no effect if a previous attempt was successful.

Querying for Metadata

Get a set of method names that a Module contains using the method_names() function:

const auto method_names = module.method_names();

if (method_names.ok()) {
  assert(method_names->count("forward"));
}

Note: method_names() will force-load the Program when called for the first time.

To introspect miscellaneous metadata about a particular method, use the method_meta() function, which returns a MethodMeta struct:

const auto method_meta = module.method_meta("forward");

if (method_meta.ok()) {
  assert(method_meta->name() == "forward");
  assert(method_meta->num_inputs() > 1);

  const auto input_meta = method_meta->input_tensor_meta(0);
  if (input_meta.ok()) {
    assert(input_meta->scalar_type() == ScalarType::Float);
  }

  const auto output_meta = method_meta->output_tensor_meta(0);
  if (output_meta.ok()) {
    assert(output_meta->sizes().size() == 1);
  }
}

Note: method_meta() will also force-load the Method the first time it is called.

Performing an Inference

Assuming the Program's method names and their input format are known ahead of time, you can run methods directly by name using the execute() function:

const auto result = module.execute("forward", tensor);

For the standard forward() method, the above can be simplified:

const auto result = module.forward(tensor);

Note: execute() or forward() will load the Program and the Method the first time they are called. Therefore, the first inference will take longer, as the model is loaded lazily and prepared for execution unless it was explicitly loaded earlier.

Setting Input and Output

You can set individual input and output values for methods with the following APIs.

Setting Inputs

Inputs can be any EValue, which includes tensors, scalars, lists, and other supported types. To set a specific input value for a method:

module.set_input("forward", input_value, input_index);
  • input_value is an EValue representing the input you want to set.
  • input_index is the zero-based index of the input to set.

For example, to set the first input tensor:

module.set_input("forward", tensor_value, 0);

You can also set multiple inputs at once:

std::vector<runtime::EValue> inputs = {input1, input2, input3};
module.set_inputs("forward", inputs);

Note: You can skip the method name argument for the forward() method.

By pre-setting all inputs, you can perform an inference without passing any arguments:

const auto result = module.forward();

Or just setting and then passing the inputs partially:

// Set the second input ahead of time.
module.set_input(input_value_1, 1);

// Execute the method, providing the first input at call time.
const auto result = module.forward(input_value_0);

Note: The pre-set inputs are stored in the Module and can be reused multiple times for the next executions.

Don't forget to clear or reset the inputs if you don't need them anymore by setting them to default-constructed EValue:

module.set_input(runtime::EValue(), 1);

Setting Outputs

Only outputs of type Tensor can be set at runtime, and they must not be memory-planned at model export time. Memory-planned tensors are preallocated during model export and cannot be replaced.

To set the output tensor for a specific method:

module.set_output("forward", output_tensor, output_index);
  • output_tensor is an EValue containing the tensor you want to set as the output.
  • output_index is the zero-based index of the output to set.

Note: Ensure that the output tensor you're setting matches the expected shape and data type of the method's output.

You can skip the method name for forward() and the index for the first output:

module.set_output(output_tensor);

Note: The pre-set outputs are stored in the Module and can be reused multiple times for the next executions, just like inputs.

Result and Error Types

Most of the ExecuTorch APIs return either Result or Error types:

  • Error is a C++ enum containing valid error codes. The default is Error::Ok, denoting success.

  • Result can hold either an Error if the operation fails, or a payload such as an EValue wrapping a Tensor if successful. To check if a Result is valid, call ok(). To retrieve the Error, use error(), and to get the data, use get() or dereference operators like * and ->.

Profiling the Module

Use ExecuTorch Dump to trace model execution. Create an ETDumpGen instance and pass it to the Module constructor. After executing a method, save the ETDump data to a file for further analysis:

#include <fstream>
#include <memory>

#include <executorch/extension/module/module.h>
#include <executorch/devtools/etdump/etdump_flatcc.h>

using namespace ::executorch::extension;

Module module("/path/to/model.pte", Module::LoadMode::MmapUseMlock, std::make_unique<ETDumpGen>());

// Execute a method, e.g., module.forward(...); or module.execute("my_method", ...);

if (auto* etdump = dynamic_cast<ETDumpGen*>(module.event_tracer())) {
  const auto trace = etdump->get_etdump_data();

  if (trace.buf && trace.size > 0) {
    std::unique_ptr<void, decltype(&free)> guard(trace.buf, free);
    std::ofstream file("/path/to/trace.etdump", std::ios::binary);

    if (file) {
      file.write(static_cast<const char*>(trace.buf), trace.size);
    }
  }
}

Conclusion

The Module APIs provide a simplified interface for running ExecuTorch models in C++, closely resembling the experience of PyTorch's eager mode. By abstracting away the complexities of the lower-level runtime APIs, developers can focus on model execution without worrying about the underlying details.