-
Notifications
You must be signed in to change notification settings - Fork 423
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add README to run the LLM fine-tune example on ET (#6159)
Add README to run the LLM fine-tune example on ET (#6150) Summary: Pull Request resolved: #6150 * Add config file explanations * Add Instructions to run the example Reviewed By: dvorjackz Differential Revision: D62648101 fbshipit-source-id: 5856ae60b8317e09e37214f725530a8b2f6dee26 (cherry picked from commit 56a3d1e) Co-authored-by: Diego Palma Sánchez <dpalmasan@meta.com>
- Loading branch information
1 parent
c169d91
commit 9aa96f8
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# ExecuTorch Finetuning example | ||
|
||
In this tutorial, we show how to fine-tune an LLM using executorch. | ||
|
||
## Pre-requisites | ||
|
||
You will need to have a model's checkpoint, in the Hugging Face format. For example: | ||
|
||
``` | ||
git clone https://huggingface.co/microsoft/Phi-3-mini-4k-instruct | ||
``` | ||
|
||
You will need to install [torchtune](https://github.com/pytorch/torchtune) following [its installation instructions](https://github.com/pytorch/torchtune?tab=readme-ov-file#installation). | ||
|
||
## Config Files | ||
|
||
As mentioned in the previous section, we internally use `torchtune` APIs, and thus, we use config files that follow `torchtune`'s structure. Typically, in the following sections we go through a working example which can be found in the `phi3_config.yaml` config file. | ||
|
||
### Tokenizer | ||
|
||
We need to define the tokenizer. Let's suppose we would like to use [PHI3 Mini Instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) model from Microsoft. We need to define the tokenizer component: | ||
|
||
``` | ||
tokenizer: | ||
_component_: torchtune.models.phi3.phi3_mini_tokenizer | ||
path: /tmp/Phi-3-mini-4k-instruct/tokenizer.model | ||
max_seq_len: 1024 | ||
``` | ||
|
||
This will load the tokenizer, and set the max sequence length to 1024. The class that will be instantiated will be [`Phi3MiniTokenizer`](https://github.com/pytorch/torchtune/blob/ee343e61804f9942b2bd48243552bf17b5d0d553/torchtune/models/phi3/_tokenizer.py#L30). | ||
|
||
### Dataset | ||
|
||
In this example we use the [Alpaca-Cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned). We need to define the following parameters: | ||
|
||
``` | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
batch_size: 1 | ||
``` | ||
|
||
Torchtune supports datasets using huggingface dataloaders, so custom datasets could also be defined. For examples on defining your own datasets, review the [torchtune docs](https://pytorch.org/torchtune/stable/tutorials/datasets.html#hugging-face-datasets). | ||
|
||
### Loss | ||
|
||
For the loss function, we use PyTorch losses. In this example we use the `CrossEntropyLoss`: | ||
|
||
``` | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
``` | ||
|
||
### Model | ||
|
||
Model parameters can be set, in this example we replicate the configuration for phi3 mini instruct benchmarks: | ||
|
||
``` | ||
model: | ||
_component_: torchtune.models.phi3.lora_phi3_mini | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
``` | ||
|
||
### Checkpointer | ||
|
||
Depending on how your model is defined, you will need to instantiate different components. In these examples we use checkpoints from HF (hugging face format), and thus we will need to instantiate a `FullModelHFCheckpointer` object. We need to pass the checkpoint directory, the files with the tensors, the output directory for training and the model type: | ||
|
||
``` | ||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Phi-3-mini-4k-instruct | ||
checkpoint_files: [ | ||
model-00001-of-00002.safetensors, | ||
model-00002-of-00002.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Phi-3-mini-4k-instruct/ | ||
model_type: PHI3_MINI | ||
``` | ||
|
||
### Device | ||
|
||
Torchtune supports `cuda` and `bf16` tensors. However, for ExecuTorch training we only support `cpu` and `fp32`: | ||
|
||
``` | ||
device: cpu | ||
dtype: fp32 | ||
``` | ||
|
||
## Running the example | ||
|
||
### Step 1: Generate the ExecuTorch PTE (checkpoint) | ||
|
||
The `model_exporter.py` exports the LLM checkpoint into an ExecuTorch checkpoint (.pte). It has two parameters: | ||
|
||
* `cfg`: Configuration file | ||
* `output_file`: The `.pte` output path | ||
|
||
``` | ||
python model_exporter.py --cfg=phi3_config.yaml --output_file=phi3_mini_lora.pte | ||
``` | ||
|
||
### Step 2: Run the fine-tuning job | ||
|
||
To run the fine-tuning job: | ||
|
||
``` | ||
python runner.py --cfg=phi3_config.yaml --model_file=phi3_mini_lora.pte | ||
``` | ||
|
||
You need to use **the same** config file from the previous step. The `model_file` arg is the `.pte` model from the previous step. | ||
|
||
Example output: | ||
|
||
``` | ||
Evaluating the model before training... | ||
100%|██████████████████████████████████████████████████████████████████████████████████████| 3/3 [31:23<00:00, 627.98s/it] | ||
Eval loss: tensor(2.3778) | ||
100%|██████████████████████████████████████████████████████████████████████████████████████| 5/5 [52:29<00:00, 629.84s/it] | ||
Losses: [2.7152762413024902, 0.7890686988830566, 2.249271869659424, 1.4777560234069824, 0.8378427624702454] | ||
100%|██████████████████████████████████████████████████████████████████████████████████████| 3/3 [30:35<00:00, 611.90s/it] | ||
Eval loss: tensor(0.8464) | ||
``` |