-
Notifications
You must be signed in to change notification settings - Fork 0
/
decoder.py
246 lines (164 loc) · 6.76 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Decoder.py - decoder of CIFAR-10 dataset
# Pickle - for decoding the data
import pickle
# NumPy - for array manipulations
import numpy as np
# Keras - for making one-hot vectors
from keras.utils import np_utils
# Matplolib - for ploting graphs and displaying images
from matplotlib import pyplot as plt
# Define Constants
path = "cifar10_dataset/" # Path to dataset
# Height or width of the images (32 x 32)
size = 32
# 3 channels of the image: Red, Green, Blue (RGB)
channels = 3
# Number of classes
num_classes = 10
# Each file in the dataset contains 10000 images
image_batch = 10000
# Number of files for training
num_files_train = 5
# Calculate total number of training images
images_train = image_batch * num_files_train
# Function to decode the files
def unpickle(file):
# Convert byte stream to object
with open(path + file,'rb') as fo:
print("Decoding file: %s" % (path+file))
dict = pickle.load(fo, encoding='bytes')
# Return images and labesl in form of a dictionary
return dict
# Convert images to NumPy arrays to make them useful
def convert_images(raw_images):
# Convert raw images to numpy array and normalize it
raw = np.array(raw_images, dtype = float) / 255.0
# Reshape to 4-dimensions - [image_number, channel, height, width]
images = raw.reshape([-1, channels, size, size])
images = images.transpose([0, 2, 3, 1])
# 4D array - [image_number, height, width, channel]
return images
# Load file, unpickle it and return images with their labels
def load_data(file):
data = unpickle(file)
# Get raw images from the dictionary
images_array = data[b'data']
# Convert image
images = convert_images(images_array)
# Convert class number to numpy array
labels = np.array(data[b'labels'])
# Images and labels in np array form
return images, labels
# Load all test data
def get_test_data():
images, labels = load_data(file = "test_batch")
# Images, their labels and
# corresponding one-hot vectors in form of np arrays
return images, labels, np_utils.to_categorical(labels,num_classes)
# Load all training data from 5 files
def get_train_data():
# Pre-allocate arrays
images = np.zeros(shape = [images_train, size, size, channels], dtype = float)
labels = np.zeros(shape=[images_train],dtype = int)
# Starting index of training dataset
start = 0
# For all 5 files
for i in range(num_files_train):
# Load images and labels
images_batch, labels_batch = load_data(file = "data_batch_" + str(i+1))
# Calculate end index for current batch
end = start + image_batch
# Store data to corresponding arrays
images[start:end,:] = images_batch
labels[start:end] = labels_batch
# Update starting index of next batch
start = end
# Images, their labels and
# corresponding one-hot vectors in form of np arrays
return images, labels, np_utils.to_categorical(labels,num_classes)
# Load class names
def get_class_names():
raw = unpickle("batches.meta")[b'label_names']
# Convert from binary strings
names = [x.decode('utf-8') for x in raw]
# Class names
return names
# Plot images
def plot_images(images, labels_true, class_names, labels_pred=None):
assert len(images) == len(labels_true)
# Create a figure with sub-plots
fig, axes = plt.subplots(3, 3, figsize = (8,8))
# Adjust the vertical spacing
if labels_pred is None:
hspace = 0.2
else:
hspace = 0.5
fig.subplots_adjust(hspace=hspace, wspace=0.3)
for i, ax in enumerate(axes.flat):
# Fix crash when less than 9 images
if i < len(images):
# Plot the image
ax.imshow(images[i], interpolation='spline16')
# Name of the true class
labels_true_name = class_names[labels_true[i]]
# Show true and predicted classes
if labels_pred is None:
xlabel = "True: "+labels_true_name
else:
# Name of the predicted class
labels_pred_name = class_names[labels_pred[i]]
xlabel = "True: "+labels_true_name+"\nPredicted: "+ labels_pred_name
# Show the class on the x-axis
ax.set_xlabel(xlabel)
# Remove ticks from the plot
ax.set_xticks([])
ax.set_yticks([])
# Show the plot
plt.show()
# Plot model
def plot_model(model_details):
# Create sub-plots
fig, axs = plt.subplots(1,2,figsize=(15,5))
# Summarize history for accuracy
axs[0].plot(range(1,len(model_details.history['acc'])+1),model_details.history['acc'])
axs[0].plot(range(1,len(model_details.history['val_acc'])+1),model_details.history['val_acc'])
axs[0].set_title('Model Accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].set_xticks(np.arange(1,len(model_details.history['acc'])+1),len(model_details.history['acc'])/10)
axs[0].legend(['train', 'val'], loc='best')
# Summarize history for loss
axs[1].plot(range(1,len(model_details.history['loss'])+1),model_details.history['loss'])
axs[1].plot(range(1,len(model_details.history['val_loss'])+1),model_details.history['val_loss'])
axs[1].set_title('Model Loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].set_xticks(np.arange(1,len(model_details.history['loss'])+1),len(model_details.history['loss'])/10)
axs[1].legend(['train', 'val'], loc='best')
# Show the plot
plt.show()
# Visualize errors
def visualize_errors(images_test, labels_test, class_names, labels_pred, correct):
incorrect = (correct == False)
# Images of the test-set that have been incorrectly classified.
images_error = images_test[incorrect]
# Get predicted classes for those images
labels_error = labels_pred[incorrect]
# Get true classes for those images
labels_true = labels_test[incorrect]
# Plot the first 9 images.
plot_images(images=images_error[0:9],
labels_true=labels_true[0:9],
class_names=class_names,
labels_pred=labels_error[0:9])
# Predict Classes
def predict_classes(model, images_test, labels_test):
# Predict class of image using model
class_pred = model.predict(images_test, batch_size=32)
# Convert vector to a label
labels_pred = np.argmax(class_pred,axis=1)
# Boolean array that tell if predicted label is the true label
correct = (labels_pred == labels_test)
# Array which tells if the prediction is correct or not
# And predicted labels
return correct, labels_pred