-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_trca.m
106 lines (100 loc) · 3.72 KB
/
train_trca.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function model = train_trca(eeg, fs, num_fbs)
% Training stage of the task-related component analysis (TRCA)-based
% steady-state visual evoked potentials (SSVEPs) detection [1].
%
% function model = train_trca(eeg, fs, num_fbs)
%
% Input:
% eeg : Input eeg data
% (# of targets, # of channels, Data length [sample])
% fs : Sampling rate
% num_fbs : # of sub-bands
%
% Output:
% model : Learning model for tesing phase of the ensemble
% TRCA-based method
% - traindata : Training data decomposed into sub-band components
% by the filter bank analysis
% (# of targets, # of sub-bands, # of channels,
% Data length [sample])
% - W : Weight coefficients for electrodes which can be
% used as a spatial filter.
% - num_fbs : # of sub-bands
% - fs : Sampling rate
% - num_targs : # of targets
%
% See also:
% test_trca.m
%
% Reference:
% [1] M. Nakanishi, Y. Wang, X. Chen, Y. -T. Wang, X. Gao, and T.-P. Jung,
% "Enhancing detection of SSVEPs for a high-speed brain speller using
% task-related component analysis",
% IEEE Trans. Biomed. Eng, 65(1):104-112, 2018.
%
% Masaki Nakanishi, 22-Dec-2017
% Swartz Center for Computational Neuroscience, Institute for Neural
% Computation, University of California San Diego
% E-mail: masaki@sccn.ucsd.edu
if nargin < 2
error('stats:train_trca:LackOfInput', 'Not enough input arguments.');
end
if ~exist('num_fbs', 'var') || isempty(num_fbs), num_fbs = 3; end
[num_targs, num_chans, num_smpls, ~] = size(eeg);
trains = zeros(num_targs, num_fbs, num_chans, num_smpls);
W = zeros(num_fbs, num_targs, num_chans);
V = zeros(num_fbs, num_targs);
V_ratio = zeros(num_fbs, num_targs);
for targ_i = 1:1:num_targs
eeg_targ = squeeze(eeg(targ_i, :, :, :));
for fb_i = 1:1:num_fbs
eeg_tmp = filterbank(eeg_targ, fs, fb_i);
trains(targ_i,fb_i,:,:) = squeeze(mean(eeg_tmp, 3));
[w_tmp, v_tmp] = trca(eeg_tmp);
W(fb_i, targ_i, :) = w_tmp(:,1);
V(fb_i, targ_i) = v_tmp(1, 1);
%V_ratio(fb_i, targ_i) = v_tmp(1, 1) / v_tmp(2, 2);
V_ratio(fb_i, targ_i) = abs(v_tmp(1, 1)) / trace(abs(v_tmp(2:end, 2:end)));
end % fb_i
end % targ_i
model = struct('trains', trains, 'W', W, 'V', V, 'V_ratio', V_ratio,...
'num_fbs', num_fbs, 'fs', fs, 'num_targs', num_targs);
function [W, V] = trca(eeg) % Origial
% Task-related component analysis (TRCA). This script was written based on
% the reference paper [1].
%
% function W = trca(eeg)
%
% Input:
% eeg : Input eeg data
% (# of channels, Data length [sample], # of trials)
%
% Output:
% W : Weight coefficients for electrodes which can be used as
% a spatial filter.
%
% Reference:
% [1] H. Tanaka, T. Katura, H. Sato,
% "Task-related component analysis for functional neuroimaging and
% application to near-infrared spectroscopy data",
% NeuroImage, vol. 64, pp. 308-327, 2013.
%
% Masaki Nakanishi, 22-Dec-2017
% Swartz Center for Computational Neuroscience, Institute for Neural
% Computation, University of California San Diego
% E-mail: masaki@sccn.ucsd.edu
[num_chans, num_smpls, num_trials] = size(eeg);
S = zeros(num_chans);
for trial_i = 1:1:num_trials
for trial_j = trial_i+1:1:num_trials
x1 = squeeze(eeg(:,:,trial_i));
x1 = bsxfun(@minus, x1, mean(x1,2));
x2 = squeeze(eeg(:,:,trial_j));
x2 = bsxfun(@minus, x2, mean(x2,2));
S = S + x1*x2' + x2*x1';
end % trial_j
end % trial_i
UX = reshape(eeg, num_chans, num_smpls*num_trials);
UX = bsxfun(@minus, UX, mean(UX,2));
Q = UX*UX';
[W,V] = eigs(S, Q);