-
Notifications
You must be signed in to change notification settings - Fork 32
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How to use v1.0-mini of nuscenes dataset? #6
Comments
I haven't tried using mini. I think you can directly use the original data preprocessing code by changing the version to v1.0-mini. |
I can successfully train and test with v1.0-trainval on pytorch = 1.4.0 and torchvision = 0.5.0. Since I only have one RTX now, I only trained once, and the results are not good as expected. When I want to use the model provided by you, I upgrade pytorch to 1.6.0, but I run as follows. I don't know whether this is correct. (base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack$ conda install pytorch=1.6.0 torchvision=0.7.0 torchaudio cudatoolkit=10.2 -c pytorch
Collecting package metadata (current_repodata.json): done
Solving environment: done
# All requested packages already installed.
(base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack$ cd det3d/ops/iou3d_nms/
(base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms$ python setup.py build_ext --inplace
running build_ext
building 'iou3d_nms_cuda' extension
Emitting ninja build file /media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
g++ -pthread -shared -B /home/ubuntu/anaconda3/compiler_compat -L/home/ubuntu/anaconda3/lib -Wl,-rpath=/home/ubuntu/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms/build/temp.linux-x86_64-3.8/src/iou3d_cpu.o /media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms/build/temp.linux-x86_64-3.8/src/iou3d_nms_api.o /media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms/build/temp.linux-x86_64-3.8/src/iou3d_nms.o /media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms/build/temp.linux-x86_64-3.8/src/iou3d_nms_kernel.o -L/home/ubuntu/anaconda3/lib/python3.8/site-packages/torch/lib -L/usr/local/cuda-10.0/lib64 -lc10 -ltorch -ltorch_cpu -ltorch_python -lcudart -lc10_cuda -ltorch_cuda -o build/lib.linux-x86_64-3.8/iou3d_nms_cuda.cpython-38-x86_64-linux-gnu.so
copying build/lib.linux-x86_64-3.8/iou3d_nms_cuda.cpython-38-x86_64-linux-gnu.so ->
(base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack/det3d/ops/iou3d_nms$ cd ../../../
(base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack$ ls
apex examples README.md
apex-6af09dd938adf11baedabd89da6cd092d3959081 INSTALL.md requirements.txt
det3d LICENSE.md save_dir
example.gif model_zoo tools
(base) ubuntu@ubuntu-System-Product-Name:/media/ubuntu/nuscenes/code/simtrack$ python ./tools/val_nusc_tracking.py examples/point_pillars/configs/nusc_all_pp_centernet_tracking.py --checkpoint /media/ubuntu/nuscenes/code/simtrack/model_zoo/simtrack_pillar.pth --work_dir /media/ubuntu/nuscenes/code/simtrack/save_dir/simtrack_test --local_rank 0
1.6.0
Use HM Bias: -2.19
======
Loading NuScenes tables for version v1.0-trainval...
Loading nuScenes-lidarseg...
32 category,
8 attribute,
4 visibility,
64386 instance,
12 sensor,
10200 calibrated_sensor,
2631083 ego_pose,
68 log,
850 scene,
34149 sample,
2631083 sample_data,
1166187 sample_annotation,
4 map,
34149 lidarseg,
Done loading in 42.830 seconds.
======
Reverse indexing ...
Done reverse indexing in 5.9 seconds.
======
Error!
Error!
Error!
Error!
Error!
Error!
/media/ubuntu/nuscenes/code/simtrack/det3d/core/bbox/geometry.py:160: NumbaWarning:
Compilation is falling back to object mode WITH looplifting enabled because Function "points_in_convex_polygon_jit" failed type inference due to: No implementation of function Function(<built-in function getitem>) found for signature:
>>> getitem(array(float64, 3d, C), Tuple(slice<a:b>, list(int64)<iv=None>, slice<a:b>))
There are 22 candidate implementations:
- Of which 20 did not match due to:
Overload of function 'getitem': File: <numerous>: Line N/A.
With argument(s): '(array(float64, 3d, C), Tuple(slice<a:b>, list(int64)<iv=None>, slice<a:b>))':
No match.
- Of which 2 did not match due to:
Overload in function 'GetItemBuffer.generic': File: numba/core/typing/arraydecl.py: Line 162.
With argument(s): '(array(float64, 3d, C), Tuple(slice<a:b>, list(int64)<iv=None>, slice<a:b>))':
Rejected as the implementation raised a specific error:
TypeError: unsupported array index type list(int64)<iv=None> in Tuple(slice<a:b>, list(int64)<iv=None>, slice<a:b>)
raised from /home/ubuntu/anaconda3/lib/python3.8/site-packages/numba/core/typing/arraydecl.py:68
During: typing of intrinsic-call at /media/ubuntu/nuscenes/code/simtrack/det3d/core/bbox/geometry.py (177)
File "det3d/core/bbox/geometry.py", line 177:
def points_in_convex_polygon_jit(points, polygon, clockwise=True):
<source elided>
polygon
- polygon[
^
@numba.jit
/media/ubuntu/nuscenes/code/simtrack/det3d/core/bbox/geometry.py:160: NumbaWarning:
Compilation is falling back to object mode WITHOUT looplifting enabled because Function "points_in_convex_polygon_jit" failed type inference due to: cannot determine Numba type of <class 'numba.core.dispatcher.LiftedLoop'>
File "det3d/core/bbox/geometry.py", line 193:
def points_in_convex_polygon_jit(points, polygon, clockwise=True):
<source elided>
# vec1: [num_polygon, num_points_of_polygon, 2]
ret = np.zeros((num_points, num_polygons), dtype=np.bool_)
^
@numba.jit
/home/ubuntu/anaconda3/lib/python3.8/site-packages/numba/core/object_mode_passes.py:177: NumbaWarning: Function "points_in_convex_polygon_jit" was compiled in object mode without forceobj=True, but has lifted loops.
File "det3d/core/bbox/geometry.py", line 171:
def points_in_convex_polygon_jit(points, polygon, clockwise=True):
<source elided>
\ # first convert polygon to directed lines
num_points_of_polygon = polygon.shape[1]
^
warnings.warn(errors.NumbaWarning(warn_msg,
/home/ubuntu/anaconda3/lib/python3.8/site-packages/numba/core/object_mode_passes.py:187: NumbaDeprecationWarning:
Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour.
For more information visit https://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit
File "det3d/core/bbox/geometry.py", line 171:
def points_in_convex_polygon_jit(points, polygon, clockwise=True):
<source elided>
# first convert polygon to directed lines
num_points_of_polygon = polygon.shape[1]
^
warnings.warn(errors.NumbaDeprecationWarning(msg,
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Error!
Thank you very much for your help the other day, but I can't thank you immediately because my machine is down. I look forward to your reply |
I solved this problem by reinstalling CUDA and cudnn. |
I met the same problem, I still have no idea to solve it. |
How to use v1.0-mini of nuscenes dataset? I can train v1.0-mini, but it is not supported during the test. I want to know if there is a solution. How long did you spend training nuscenes dataset? I only have one GPU. Should i set -- nproc_ per_ Set to 1? About ./model_ zoo/simtrack_ Pillar.pth, I get the following results: Super (open_zipfile_reader, self)_ init__ (torch.C.PyTorchFileReader(name_or_buffer))
RuntimeError: version <= kMaxSupportedFileFormatVersion INTERNAL ASSERT FAILED at /opt/conda/conda-bld/pytorch_ 1579061855666/work/caffe2/serialize/inline_ container.cc:132, please report a bug to PyTorch. Attempted to read a PyTorch file with version 3, but the maximum supported version for reading is 2. Your PyTorch installation may be too old. (init at /opt/conda/conda-bld/pytorch_1579061855666/work/caffe2/serialize/inline_container.cc:132)
frame #0: c10::Error::Error(c10::SourceLocation, std::string const&) + 0x47 (0x7f24ac0a7627 in /home/ubuntu/anaconda3/lib/python3.8/site-packages/torch/lib/libc10.so)
Can you provide a trained (pillar based) model with unlimited pytorch version and the specific environment version? Thank you very much for your help.
The text was updated successfully, but these errors were encountered: