forked from karlnapf/ds3_kernel_testing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathksd.py
346 lines (251 loc) · 11.3 KB
/
ksd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from scipy.spatial.distance import squareform, pdist
from numpy.linalg import linalg, LinAlgError
from scipy.stats import chi2
import numpy as np
def simulate( nPeriod, nPath,beta):
noise = np.random.randn(nPeriod, nPath)
sims = np.zeros((nPeriod, nPath))
sims[0] = noise[0]
sqrt_beta = np.sqrt(1 - beta ** 2)
for period in range(1, nPeriod):
sims[period] = beta*sims[period-1] + sqrt_beta *noise[period]
return sims
def simulatepm(N,p_change):
X = np.zeros(N)-1
change_sign = np.random.rand(N) < p_change
for i in range(N):
if change_sign[i]:
X[i] = -X[i-1]
else:
X[i] = X[i-1]
return X
class GaussianQuadraticTest:
def __init__(self, grad_log_prob, scaling=2.0, grad_log_prob_multiple=None):
self.scaling = scaling
self.grad = grad_log_prob
# construct (slow) multiple gradient handle if efficient one is not given
if grad_log_prob_multiple is None:
def grad_multiple(X):
# simply loop over grad calls. Slow
return np.array([self.grad(x) for x in X])
self.grad_multiple = grad_multiple
else:
self.grad_multiple = grad_log_prob_multiple
def k(self, x, y):
return np.exp(-np.dot(x - y,x - y) / self.scaling)
def k_multiple(self, X):
"""
Efficient computation of kernel matrix without loops
Effectively does the same as calling self.k on all pairs of the input
"""
assert(X.ndim == 1)
sq_dists = squareform(pdist(X.reshape(len(X), 1), 'sqeuclidean'))
K = np.exp(-(sq_dists) / self.scaling)
return K
def k_multiple_dim(self, X):
# check for stupid mistake
assert X.shape[0] > X.shape[1]
sq_dists = squareform(pdist(X, 'sqeuclidean'))
K = np.exp(-(sq_dists) / self.scaling)
return K
def g1k(self, x, y):
return -2.0 / self.scaling * self.k(x, y) * (x - y)
def g1k_multiple(self, X):
"""
Efficient gradient computation of Gaussian kernel with multiple inputs
Effectively does the same as calling self.g1k on all pairs of the input
"""
assert X.ndim == 1
differences = X.reshape(len(X), 1) - X.reshape(1, len(X))
sq_differences = differences ** 2
K = np.exp(-sq_differences / self.scaling)
return -2.0 / self.scaling * K * differences
def g1k_multiple_dim(self, X,K,dim):
X_dim = X[:,dim]
assert X_dim.ndim == 1
differences = X_dim.reshape(len(X_dim), 1) - X_dim.reshape(1,len(X_dim))
return -2.0 / self.scaling * K * differences
def g2k(self, x, y):
return -self.g1k(x, y)
def g2k_multiple(self, X):
"""
Efficient 2nd gradient computation of Gaussian kernel with multiple inputs
Effectively does the same as calling self.g2k on all pairs of the input
"""
return -self.g1k_multiple(X)
def g2k_multiple_dim(self, X,K,dim):
return -self.g1k_multiple_dim(X,K,dim)
def gk(self, x, y):
return 2.0 * self.k(x, y) * (self.scaling - 2 * (x - y) ** 2) / self.scaling ** 2
def gk_multiple(self, X):
"""
Efficient gradient computation of Gaussian kernel with multiple inputs
Effectively does the same as calling self.gk on all pairs of the input
"""
assert X.ndim == 1
differences = X.reshape(len(X), 1) - X.reshape(1, len(X))
sq_differences = differences ** 2
K = np.exp(-sq_differences / self.scaling)
return 2.0 * K * (self.scaling - 2 * sq_differences) / self.scaling ** 2
def gk_multiple_dim(self, X,K,dim):
X_dim = X[:,dim]
assert X_dim.ndim == 1
differences = X_dim.reshape(len(X_dim), 1) - X_dim.reshape(1,len(X_dim))
sq_differences = differences ** 2
return 2.0 * K * (self.scaling - 2 * sq_differences) / self.scaling ** 2
def get_statisitc(self, N, samples):
U_matrix = np.zeros((N, N))
for i in range(N):
for j in range(N):
x1 = samples[i]
x2 = samples[j]
a = self.grad(x1) * self.grad(x2) * self.k(x1, x2)
b = self.grad(x2) * self.g1k(x1, x2)
c = self.grad(x1) * self.g2k(x1, x2)
d = self.gk(x1, x2)
U_matrix[i, j] = a + b + c + d
stat = N * np.mean(U_matrix)
return U_matrix, stat
def get_statisitc_two_dim(self, N, samples,dim):
U_matrix = np.zeros((N, N))
for i in range(N):
for j in range(N):
x1 = samples[i]
x2 = samples[j]
a = self.grad(x1)[dim] * self.grad(x2)[dim] * self.k(x1, x2)
b = self.grad(x2)[dim] * self.g1k(x1, x2)[dim]
c = self.grad(x1)[dim] * self.g2k(x1, x2)[dim]
d = self.gk(x1, x2)[dim]
U_matrix[i, j] = a + b + c + d
stat = N * np.mean(U_matrix)
return U_matrix, stat
def get_statistic_multiple_dim(self, samples,dim):
log_pdf_gradients = self.grad_multiple(samples)
log_pdf_gradients = log_pdf_gradients[:,dim]
K = self.k_multiple_dim(samples)
G1K = self.g1k_multiple_dim(samples,K,dim)
G2K = self.g2k_multiple_dim(samples,K,dim)
GK = self.gk_multiple_dim(samples,K,dim)
# use broadcasting to mimic the element wise looped call
pairwise_log_gradients = log_pdf_gradients.reshape(len(log_pdf_gradients), 1) * log_pdf_gradients.reshape(1, len(log_pdf_gradients))
A = pairwise_log_gradients * K
B = G1K * log_pdf_gradients
C = (G2K.T * log_pdf_gradients).T
D = GK
U = A + B + C + D
stat = len(samples) * np.mean(U)
return U, stat
def get_statistic_multiple(self, samples):
"""
Efficient statistic computation with multiple inputs
Effectively does the same as calling self.get_statisitc.
"""
log_pdf_gradients = self.grad_multiple(samples)
K = self.k_multiple(samples)
G1K = self.g1k_multiple(samples)
G2K = self.g2k_multiple(samples)
GK = self.gk_multiple(samples)
# use broadcasting to mimic the element wise looped call
pairwise_log_gradients = log_pdf_gradients.reshape(len(log_pdf_gradients), 1) * log_pdf_gradients.reshape(1, len(log_pdf_gradients))
A = pairwise_log_gradients * K
B = G1K * log_pdf_gradients
C = (G2K.T * log_pdf_gradients).T
D = GK
U = A + B + C + D
stat = len(samples) * np.mean(U)
return U, stat
def get_statistic_multiple_custom_gradient(self, samples, log_pdf_gradients):
"""
Implements the statistic for multiple samples, each from a different
density whose gradient at the sample is passed
"""
K = self.k_multiple(samples)
G1K = self.g1k_multiple(samples)
G2K = self.g2k_multiple(samples)
GK = self.gk_multiple(samples)
# use broadcasting to mimic the element wise looped call
pairwise_log_gradients = log_pdf_gradients.reshape(len(log_pdf_gradients), 1) * log_pdf_gradients.reshape(1, len(log_pdf_gradients))
A = pairwise_log_gradients * K
B = G1K * log_pdf_gradients
C = (G2K.T * log_pdf_gradients).T
D = GK
U = A + B + C + D
stat = len(samples) * np.mean(U)
return U, stat
def compute_pvalue(self, U_matrix, num_bootstrapped_stats=100):
N = U_matrix.shape[0]
bootsraped_stats = np.zeros(num_bootstrapped_stats)
for proc in range(num_bootstrapped_stats):
W = np.sign(np.random.randn(N))
WW = np.outer(W, W)
st = np.mean(U_matrix * WW)
bootsraped_stats[proc] = N * st
stat = N*np.mean(U_matrix)
return float(np.sum(bootsraped_stats > stat)) / num_bootstrapped_stats
def compute_pvalues_for_processes(self,U_matrix,chane_prob, num_bootstrapped_stats=100):
N = U_matrix.shape[0]
bootsraped_stats = np.zeros(num_bootstrapped_stats)
# orsetinW = simulate(N,num_bootstrapped_stats,corr)
for proc in range(num_bootstrapped_stats):
# W = np.sign(orsetinW[:,proc])
W = simulatepm(N,chane_prob)
WW = np.outer(W, W)
st = np.mean(U_matrix * WW)
bootsraped_stats[proc] = N * st
stat = N*np.mean(U_matrix)
return float(np.sum(bootsraped_stats > stat)) / num_bootstrapped_stats
def mahalanobis_distance(difference, num_random_features):
num_samples, _ = np.shape(difference)
sigma = np.cov(np.transpose(difference))
mu = np.mean(difference, 0)
if num_random_features == 1:
stat = float(num_samples * mu ** 2) / float(sigma)
else:
try:
linalg.inv(sigma)
except LinAlgError:
print('covariance matrix is singular. Pvalue returned is 1.1')
warnings.warn('covariance matrix is singular. Pvalue returned is 1.1')
return 0
stat = num_samples * mu.dot(linalg.solve(sigma, np.transpose(mu)))
return chi2.sf(stat, num_random_features)
class GaussianSteinTest:
def __init__(self, grad_log_prob, num_random_freq, scaling=(1.0, 10.0)):
self.number_of_random_frequencies = num_random_freq
self.scaling = scaling
def stein_stat(random_frequency, samples):
random_scale = np.random.uniform(self.scaling[0], self.scaling[1])
a = grad_log_prob(samples)
b = self._gaussian_test_function(samples, random_frequency, random_scale)
c = self._test_function_grad(samples, random_frequency, random_scale)
return a * b + c
self.stein_stat = stein_stat
def _make_two_dimensional(self, z):
if len(z.shape) == 1:
z = z[:, np.newaxis]
return z
def _get_mean_embedding(self, x, random_frequency, scaling=2.0):
z = x - random_frequency
z = linalg.norm(z, axis=1) ** 2
z = np.exp(-z / scaling)
return z
def _gaussian_test_function(self, x, random_frequency, scaling=2.0):
x = self._make_two_dimensional(x)
mean_embedding = self._get_mean_embedding(x, random_frequency, scaling)
return np.tile(mean_embedding, (self.shape, 1)).T
def _test_function_grad(self, x, omega, scaling=2.0):
arg = (x - omega) * 2 / scaling
test_function_val = self._gaussian_test_function(x, omega, scaling)
return -arg * test_function_val
def compute_pvalue(self, samples):
samples = self._make_two_dimensional(samples)
self.shape = samples.shape[1]
stein_statistics = []
for f in range(self.number_of_random_frequencies):
# This is a little bit of a bug , but th holds even for this choice
random_frequency = np.random.randn()
matrix_of_stats = self.stein_stat(random_frequency=random_frequency, samples=samples)
stein_statistics.append(matrix_of_stats)
normal_under_null = np.hstack(stein_statistics)
normal_under_null = self._make_two_dimensional(normal_under_null)
return mahalanobis_distance(normal_under_null, normal_under_null.shape[1])