diff --git a/docs/404.html b/docs/404.html index 7e41807..8faea44 100644 --- a/docs/404.html +++ b/docs/404.html @@ -32,7 +32,7 @@
diff --git a/docs/articles/SpatialFiltering.html b/docs/articles/SpatialFiltering.html index d2f66f1..484e162 100644 --- a/docs/articles/SpatialFiltering.html +++ b/docs/articles/SpatialFiltering.html @@ -33,7 +33,7 @@ diff --git a/docs/articles/index.html b/docs/articles/index.html index f5b6aed..2053313 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -17,7 +17,7 @@ diff --git a/docs/articles/nb_igraph.html b/docs/articles/nb_igraph.html index 867c600..c560d81 100644 --- a/docs/articles/nb_igraph.html +++ b/docs/articles/nb_igraph.html @@ -33,7 +33,7 @@ @@ -162,7 +162,7 @@## Loading required package: spData
## Loading required package: Matrix
## Loading required package: sf
-## Linking to GEOS 3.12.1, GDAL 3.8.0, PROJ 9.3.0; sf_use_s2() is TRUE
+## Linking to GEOS 3.12.1, GDAL 3.8.3, PROJ 9.3.1; sf_use_s2() is TRUE
## GEOS GDAL proj.4 GDAL_with_GEOS USE_PROJ_H
-## "3.12.1" "3.8.0" "9.3.0" "true" "true"
+## "3.12.1" "3.8.3" "9.3.1" "true" "true"
## PROJ
-## "9.3.0"
+## "9.3.1"
library(sf)
columbus <- st_read(system.file("shapes/columbus.shp", package="spData")[1])
-g1 <- graph.adjacency(B, mode="undirected")
-class(g1)
## [1] "igraph"
+g1 <- graph.adjacency(B, mode="undirected")
+## Warning: `graph.adjacency()` was deprecated in igraph 2.0.0.
+## ℹ Please use `graph_from_adjacency_matrix()` instead.
+## This warning is displayed once every 8 hours.
+## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
+## generated.
+class(g1)
## [1] "igraph"
+
object.size(g1)
## 6544 bytes
@@ -568,23 +574,15 @@ get.adjacency
chooses a particular class of sparse matrix
to be returned, so that the conversion process typically leads many
matrices to fewer graph types, and back to fewer matrix types:
-+-# Matrix 1.4-2 vulnerability work-around ow <- options("warn")$warn options("warn"=2L) -B1 <- try(get.adjacency(g1), silent=TRUE) -if (!inherits(B1, "try-error")) print(class(B1))
-## [1] "dgCMatrix" -## attr(,"package") -## [1] "Matrix"
--if (!inherits(B1, "try-error")) print(object.size(B1))
- -## 10824 bytes
-## [1] TRUE
+B1 <- try(get.adjacency(g1), silent=TRUE) +if (!inherits(B1, "try-error")) print(class(B1)) +if (!inherits(B1, "try-error")) print(object.size(B1)) +if (!inherits(B1, "try-error")) print(all.equal(B, as(B1, "CsparseMatrix"))) +options("warn"=ow)-options("warn"=ow)
nb
object is divided up into separate
subgraphs, and which entities are members of which such subgraph.
-+## @@ -606,21 +604,27 @@
Graph components in igraph<
The same result can be obtained using the
-clusters
function in igraph:+-c1 <- clusters(g1) -c1$no == res$nc
++c1 <- clusters(g1)
+## Warning: `clusters()` was deprecated in igraph 2.0.0. +## ℹ Please use `components()` instead. +## This warning is displayed once every 8 hours. +## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was +## generated.
+c1$no == res$nc
-## [1] TRUE
+all.equal(c1$membership, res$comp.id)
-## [1] "names for target but not for current"
@@ -71,7 +71,13 @@+## [1] TRUE
The same holds for the row-standardised variant:
-@@ -636,16 +640,27 @@+W <- as(spdep::nb2listw(col2, style="W", zero.policy=TRUE), "CsparseMatrix") -g1W <- graph.adjacency(W, mode="directed", weighted="W") -c1W <- clusters(g1W) +g1W <- graph.adjacency(W, mode="directed", weighted="W") +c1W <- clusters(g1W) all.equal(c1W$membership, res$comp.id)
## [1] "names for target but not for current"
Shortest paths in weights mat above. The diameter measure is then the diameter of the largest component subgraph. Note that this generates an
n
xn
matrix: -+-is.connected(g1)
++is.connected(g1)
## Warning: `is.connected()` was deprecated in igraph 2.0.0. +## ℹ Please use `is_connected()` instead. +## This warning is displayed once every 8 hours. +## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was +## generated.
-## [1] FALSE
diff --git a/docs/reference/SLX.html b/docs/reference/SLX.html index 698dc47..d6653d7 100644 --- a/docs/reference/SLX.html +++ b/docs/reference/SLX.html @@ -17,7 +17,7 @@+dg1 <- diameter(g1) dg1
-## [1] 7
+-sp_mat <- shortest.paths(g1) -str(sp_mat)
++sp_mat <- shortest.paths(g1)
+## Warning: `shortest.paths()` was deprecated in igraph 2.0.0. +## ℹ Please use `distances()` instead. +## This warning is displayed once every 8 hours. +## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was +## generated.
+str(sp_mat)
## num [1:49, 1:49] 0 1 1 2 2 3 4 3 3 4 ... ## - attr(*, "dimnames")=List of 2 ## ..$ : chr [1:49] "1" "2" "3" "4" ... @@ -659,7 +674,7 @@
Shortest paths in weights matr in advance (the largest lag order for which the number of links is greater than zero), we run into the problem of how to represent missing neighbour information. -
@@ -412,7 +412,7 @@+@@ -168,7 +168,7 @@nbl10 <- spdep::nblag(col2, maxlag=10) vals <- sapply(nbl10, function(x) sum(spdep::card(x))) zero <- which(vals == 0) @@ -671,7 +686,7 @@
Shortest paths in weights matr produced by
shortest.paths
, we need to set all these non-structural zeros to infinity (the length of the path between unconnected nodes), and re-instate structural zeros on the diagonal: -@@ -179,21 +179,21 @@+lmat <- lapply(nbl10[1:(zero[1]-1)], spdep::nb2mat, style="B", zero.policy=TRUE) mat <- matrix(0, n, n) for (i in seq(along=lmat)) mat = mat + i*lmat[[i]] @@ -705,23 +720,23 @@
Smirnov/Anselin (2009) cyclical m this for each block/subgraph by testing the condition until it meets w[j,k] > 0, at which point it breaks. Smirnov and Anselin (2009) state that rook neighbours on a regular grid meet the condition: -
@@ -64,7 +64,13 @@+nb_r <- spdep::cell2nb(7, 7, type="rook") nb_rW <- spdep::nb2listw(nb_r, style="W") spdep:::find_q1_q2(nb_rW)
## [1] 1 1
One block/graph component is found, and this one meets the cyclical matrix condition, as also shown by the domain:
-diff --git a/docs/news/index.html b/docs/news/index.html index 870b0f3..0896f4c 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -17,7 +17,7 @@+1/range(Re(eigenw(similar.listw(nb_rW))))
## [1] -1 1
This does not apply to the spatial weights we have been using above, with two non-singleton components, neither meeting the cyclical matrix condition:
-diff --git a/docs/index.html b/docs/index.html index 8dfd9b2..aa31d2b 100644 --- a/docs/index.html +++ b/docs/index.html @@ -33,7 +33,7 @@+spdep:::find_q1_q2(nb_W)
-## [1] 2 0
@@ -121,7 +121,7 @@+1/range(Re(eigenw(similar.listw(nb_W))))
## [1] -1.544645 1.000000
By construction, all two-node connected graph components also meet diff --git a/docs/articles/sids_models.html b/docs/articles/sids_models.html index 0a8cecc..ce56078 100644 --- a/docs/articles/sids_models.html +++ b/docs/articles/sids_models.html @@ -33,7 +33,7 @@
Getting the data into R
We will be using the spdep and spatialreg packages, here version: spdep, version -1.3-1, 2023-11-03, the sf package and the +1.3-2, 2024-01-17, the sf package and the tmap package. The data from the sources referred to above is documented in the help page for the
nc.sids
data set in diff --git a/docs/authors.html b/docs/authors.html index 89dfe06..8631e1f 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -17,7 +17,7 @@Changelog
-+Version 1.3-1 (development)
+Version 1.3-2 (development)
+
- +
pass through SlX formula in call
- +
re-corrected #19 because the fitted model weights component may be NULL
- +
suppress warning from
multcomp::glht
as the test which throws the warning is discarded+diff --git a/docs/reference/MCMCsamp.html b/docs/reference/MCMCsamp.html index 20013ef..b34c604 100644 --- a/docs/reference/MCMCsamp.html +++ b/docs/reference/MCMCsamp.html @@ -17,7 +17,7 @@Version 1.3-1 (2023-11-23)2023-11-23
move
expm
from Imports to Suggests #42added
zero.policy
pass-through tospdep::mat2listw
calls inpredict.Sarlm
and tospdep::sn2listw
insids_models.Rmd
; setspdep
requirement to1.3-1
- diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 5976ad2..25030c2 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -5,5 +5,5 @@ articles: SpatialFiltering: SpatialFiltering.html nb_igraph: nb_igraph.html sids_models: sids_models.html -last_built: 2023-11-23T10:35Z +last_built: 2024-02-06T11:49Z diff --git a/docs/reference/GMerrorsar.html b/docs/reference/GMerrorsar.html index 9b81b7a..447012a 100644 --- a/docs/reference/GMerrorsar.html +++ b/docs/reference/GMerrorsar.html @@ -17,7 +17,7 @@
corrected #19 because the fitted model weights component is never NULL, but may have a single unique value
Examples
#> 1. Empirical mean and standard deviation for each variable, #> plus standard error of the mean: #> -#> Mean SD Naive SE Time-series SE -#> lambda 0.04501 0.01711 0.000541 0.002089 -#> (Intercept) -0.62524 0.18031 0.005702 0.022321 -#> PEXPOSURE 0.07085 0.04851 0.001534 0.006552 -#> PCTAGE65P 3.74204 0.60659 0.019182 0.068848 -#> PCTOWNHOME -0.39873 0.21332 0.006746 0.025439 +#> Mean SD Naive SE Time-series SE +#> lambda 0.04611 0.01498 0.0004736 0.001756 +#> (Intercept) -0.65331 0.19263 0.0060916 0.026540 +#> PEXPOSURE 0.08968 0.04897 0.0015486 0.006607 +#> PCTAGE65P 3.69656 0.52425 0.0165784 0.057839 +#> PCTOWNHOME -0.39485 0.23949 0.0075732 0.037397 #> #> 2. Quantiles for each variable: #> #> 2.5% 25% 50% 75% 97.5% -#> lambda 0.009947 0.03345 0.04621 0.05710 0.07604 -#> (Intercept) -0.975566 -0.74111 -0.62524 -0.49983 -0.28177 -#> PEXPOSURE -0.005411 0.03271 0.06415 0.09889 0.17297 -#> PCTAGE65P 2.728875 3.32066 3.64211 4.14748 4.94058 -#> PCTOWNHOME -0.816134 -0.52762 -0.40539 -0.25284 0.01614 +#> lambda 0.015004 0.03557 0.04640 0.05531 0.07351 +#> (Intercept) -1.089847 -0.77125 -0.63878 -0.51969 -0.34027 +#> PEXPOSURE -0.001914 0.05288 0.09113 0.12367 0.18519 +#> PCTAGE65P 2.672002 3.33982 3.67753 4.04290 4.74392 +#> PCTOWNHOME -0.845780 -0.56384 -0.41154 -0.21860 0.07637 #> if (FALSE) { esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata, @@ -259,20 +259,20 @@Examples
#> plus standard error of the mean: #> #> Mean SD Naive SE Time-series SE -#> lambda 0.04276 0.01673 0.0005291 0.002137 -#> (Intercept) -0.64231 0.19940 0.0063056 0.027545 -#> PEXPOSURE 0.08298 0.04821 0.0015246 0.007180 -#> PCTAGE65P 3.76613 0.59918 0.0189478 0.070409 -#> PCTOWNHOME -0.40409 0.19845 0.0062755 0.026634 +#> lambda 0.04086 0.01436 0.0004541 0.001639 +#> (Intercept) -0.62555 0.18275 0.0057791 0.024443 +#> PEXPOSURE 0.06900 0.04034 0.0012758 0.004965 +#> PCTAGE65P 3.68791 0.64881 0.0205172 0.077680 +#> PCTOWNHOME -0.38263 0.19769 0.0062513 0.025188 #> #> 2. Quantiles for each variable: #> -#> 2.5% 25% 50% 75% 97.5% -#> lambda 0.0141671 0.03110 0.04116 0.05429 0.07622 -#> (Intercept) -1.0578824 -0.77036 -0.61555 -0.49229 -0.28781 -#> PEXPOSURE 0.0007409 0.04776 0.07779 0.12221 0.17562 -#> PCTAGE65P 2.6714807 3.33132 3.75638 4.27260 4.92908 -#> PCTOWNHOME -0.8107680 -0.53926 -0.39020 -0.25915 -0.01036 +#> 2.5% 25% 50% 75% 97.5% +#> lambda 0.014717 0.03100 0.04103 0.05272 0.065715 +#> (Intercept) -0.972641 -0.75486 -0.63637 -0.50400 -0.198074 +#> PEXPOSURE -0.004903 0.03891 0.06820 0.09560 0.152374 +#> PCTAGE65P 2.382993 3.31371 3.67406 4.12972 4.919868 +#> PCTOWNHOME -0.779951 -0.49064 -0.38080 -0.25234 -0.003732 #> if (FALSE) { esar0w <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata, diff --git a/docs/reference/ME.html b/docs/reference/ME.html index 8f190b5..99540ec 100644 --- a/docs/reference/ME.html +++ b/docs/reference/ME.html @@ -17,7 +17,7 @@Examples
#> eV[,1], I: 0.08290518 ZI: NA, pr(ZI): 0.04 #> eV[,9], I: 0.06426565 ZI: NA, pr(ZI): 0.14 #> user system elapsed -#> 1.335 0.006 1.352 +#> 1.300 0.006 1.315 glmME <- glm(c(hopkins_part) ~ 1 + fitted(MEbinom1), family="binomial") #anova(glmME, test="Chisq") coef(summary(glmME)) diff --git a/docs/reference/ML_models.html b/docs/reference/ML_models.html index b1b5c37..61c3403 100644 --- a/docs/reference/ML_models.html +++ b/docs/reference/ML_models.html @@ -29,7 +29,7 @@Examples
#> ML residual variance (sigma squared): 95.494, (sigma: 9.7721) #> Number of observations: 49 #> Number of parameters estimated: 5 -#> AIC: NA (not available for weighted model), (AIC for lm: 382.75) +#> AIC: 374.78, (AIC for lm: 382.75) #> LM test for residual autocorrelation #> test value: 0.31954, p-value: 0.57188 #> @@ -476,7 +476,7 @@Examples
#> Computing eigenvalues ... #> #> user system elapsed -#> 0.145 0.001 0.146 +#> 0.180 0.000 0.182 summary(COL.lag.M) #> #> Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = COL.OLD, listw = listw, @@ -502,7 +502,7 @@Examples
#> ML residual variance (sigma squared): 95.494, (sigma: 9.7721) #> Number of observations: 49 #> Number of parameters estimated: 5 -#> AIC: NA (not available for weighted model), (AIC for lm: 382.75) +#> AIC: 374.78, (AIC for lm: 382.75) #> LM test for residual autocorrelation #> test value: 0.31954, p-value: 0.57188 #> @@ -827,7 +827,7 @@Examples
#> ML residual variance (sigma squared): 95.604, (sigma: 9.7777) #> Number of observations: 49 #> Number of parameters estimated: 6 -#> AIC: NA (not available for weighted model), (AIC for lm: 382.75) +#> AIC: 376.47, (AIC for lm: 382.75) #> set.seed(1) summary(impacts(COL.sacW.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE) @@ -885,7 +885,7 @@Examples
#> ML residual variance (sigma squared): 93.149, (sigma: 9.6514) #> Number of observations: 49 #> Number of parameters estimated: 8 -#> AIC: NA (not available for weighted model), (AIC for lm: 382.75) +#> AIC: 378.68, (AIC for lm: 382.75) #> set.seed(1) summary(impacts(COL.msacW.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE) @@ -943,7 +943,7 @@Examples
#> ML residual variance (sigma squared): 93.149, (sigma: 9.6514) #> Number of observations: 49 #> Number of parameters estimated: 8 -#> AIC: NA (not available for weighted model), (AIC for lm: 382.75) +#> AIC: 378.68, (AIC for lm: 382.75) #> set.seed(1) summary(impacts(COL.msacW1.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE) @@ -1002,7 +1002,7 @@Examples
#> ML residual variance (sigma squared): 85.135, (sigma: 9.2269) #> Number of observations: 49 #> Number of parameters estimated: 8 -#> AIC: NA (not available for weighted model), (AIC for lm: 369.42) +#> AIC: 373.93, (AIC for lm: 369.42) #> summary(impacts(COL.msacW2.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE) #> Impact measures (sacmixed, trace): diff --git a/docs/reference/SET_MCMC.html b/docs/reference/SET_MCMC.html index c63be90..4f4e74a 100644 --- a/docs/reference/SET_MCMC.html +++ b/docs/reference/SET_MCMC.html @@ -17,7 +17,7 @@Spatial Durbin linear (SLX, spatially lagged X) model
+predict(object, newdata, listw, zero.policy=NULL, ...) +create_WX(x, listw, zero.policy=NULL, prefix="")lmSLX(formula, data = list(), listw, na.action, weights=NULL, Durbin=TRUE, zero.policy=NULL) -create_WX(x, listw, zero.policy=NULL, prefix="") +# S3 method for SlX +print(x, digits = max(3L, getOption("digits") - 3L), ...) +# S3 method for SlX +summary(object, correlation = FALSE, symbolic.cor = FALSE, ...) +# S3 method for summary.SlX +print(x, digits = max(3L, getOption("digits") - 3L), + symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) # S3 method for SlX impacts(obj, ...) # S3 method for WXimpact @@ -79,7 +85,8 @@
Spatial Durbin linear (SLX, spatially lagged X) model
# S3 method for WXimpact summary(object, ..., adjust_k=(attr(object, "type") == "SDEM")) # S3 method for SlX -predict(object, newdata, listw, zero.policy=NULL, ...)@@ -108,6 +115,18 @@diff --git a/docs/reference/aple.html b/docs/reference/aple.html index 398ac03..a441c45 100644 --- a/docs/reference/aple.html +++ b/docs/reference/aple.html @@ -17,7 +17,7 @@Arguments
zero.policy + default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
digits ++ + the number of significant digits to use when printing
correlation ++ + logical; if
TRUE
, the correlation matrix of the estimated parameters is returned and printedsymbolic.cor ++ + logical. If
TRUE
, print the correlations in a symbolic form (see 'symnum') rather than as numberssignif.stars ++ logical. If
TRUE
, 'significance stars' are printed for each coefficientobj @@ -154,23 +173,13 @@ A spatial regression object created by
lmSLX
Examples
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), #> data = as.data.frame(x), weights = weights) #> -#> Residuals: -#> Min 1Q Median 3Q Max -#> -36.536 -7.835 0.474 8.349 25.594 -#> #> Coefficients: -#> Estimate Std. Error t value Pr(>|t|) -#> (Intercept) 75.0287 6.6260 11.323 1.26e-14 *** -#> INC -1.1089 0.3738 -2.967 0.00485 ** -#> HOVAL -0.2897 0.1014 -2.858 0.00649 ** -#> lag.INC -1.3710 0.5613 -2.443 0.01867 * -#> lag.HOVAL 0.1918 0.2003 0.957 0.34369 -#> --- -#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#> -#> Residual standard error: 10.93 on 44 degrees of freedom -#> Multiple R-squared: 0.6088, Adjusted R-squared: 0.5732 -#> F-statistic: 17.12 on 4 and 44 DF, p-value: 1.553e-08 +#> Estimate Std. Error t value Pr(>|t|) +#> (Intercept) 7.503e+01 6.626e+00 1.132e+01 1.261e-14 +#> INC -1.109e+00 3.738e-01 -2.967e+00 4.854e-03 +#> HOVAL -2.897e-01 1.014e-01 -2.858e+00 6.486e-03 +#> lag.INC -1.371e+00 5.613e-01 -2.443e+00 1.867e-02 +#> lag.HOVAL 1.918e-01 2.003e-01 9.572e-01 3.437e-01 #> summary(impacts(COL.SLX)) #> Impact measures (SlX, glht, n-k): @@ -225,25 +234,15 @@Examples
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), #> data = as.data.frame(x), weights = weights) #> -#> Residuals: -#> Min 1Q Median 3Q Max -#> -33.974 -7.764 0.907 6.820 24.395 -#> #> Coefficients: -#> Estimate Std. Error t value Pr(>|t|) -#> (Intercept) 92.459835 19.278187 4.796 2.06e-05 *** -#> INC -0.947594 0.398833 -2.376 0.0221 * -#> HOVAL -0.777428 0.464457 -1.674 0.1016 -#> I.HOVAL.2. 0.004640 0.004226 1.098 0.2785 -#> lag.INC -1.275339 0.596874 -2.137 0.0385 * -#> lag.HOVAL -0.355048 0.982132 -0.362 0.7195 -#> lag.I.HOVAL.2. 0.005608 0.009084 0.617 0.5403 -#> --- -#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#> -#> Residual standard error: 10.99 on 42 degrees of freedom -#> Multiple R-squared: 0.6224, Adjusted R-squared: 0.5684 -#> F-statistic: 11.54 on 6 and 42 DF, p-value: 1.361e-07 +#> Estimate Std. Error t value Pr(>|t|) +#> (Intercept) 9.246e+01 1.928e+01 4.796e+00 2.058e-05 +#> INC -9.476e-01 3.988e-01 -2.376e+00 2.214e-02 +#> HOVAL -7.774e-01 4.645e-01 -1.674e+00 1.016e-01 +#> I.HOVAL.2. 4.640e-03 4.226e-03 1.098e+00 2.785e-01 +#> lag.INC -1.275e+00 5.969e-01 -2.137e+00 3.849e-02 +#> lag.HOVAL -3.550e-01 9.821e-01 -3.615e-01 7.195e-01 +#> lag.I.HOVAL.2. 5.608e-03 9.084e-03 6.174e-01 5.403e-01 #> COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=~INC) summary(impacts(COL.SLX)) @@ -277,23 +276,13 @@Examples
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), #> data = as.data.frame(x), weights = weights) #> -#> Residuals: -#> Min 1Q Median 3Q Max -#> -35.908 -7.085 0.770 7.147 24.684 -#> #> Coefficients: -#> Estimate Std. Error t value Pr(>|t|) -#> (Intercept) 83.679968 9.264846 9.032 1.4e-11 *** -#> INC -1.079065 0.384711 -2.805 0.00747 ** -#> HOVAL -0.634519 0.447601 -1.418 0.16335 -#> I.HOVAL.2. 0.003455 0.004110 0.841 0.40510 -#> lag.INC -1.010896 0.455267 -2.220 0.03159 * -#> --- -#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#> -#> Residual standard error: 10.96 on 44 degrees of freedom -#> Multiple R-squared: 0.607, Adjusted R-squared: 0.5712 -#> F-statistic: 16.99 on 4 and 44 DF, p-value: 1.716e-08 +#> Estimate Std. Error t value Pr(>|t|) +#> (Intercept) 8.368e+01 9.265e+00 9.032e+00 1.401e-11 +#> INC -1.079e+00 3.847e-01 -2.805e+00 7.466e-03 +#> HOVAL -6.345e-01 4.476e-01 -1.418e+00 1.634e-01 +#> I.HOVAL.2. 3.455e-03 4.110e-03 8.406e-01 4.051e-01 +#> lag.INC -1.011e+00 4.553e-01 -2.220e+00 3.159e-02 #> COL.SLX <- lmSLX(CRIME ~ INC, data=COL.OLD, listw=lw) summary(COL.SLX) @@ -302,21 +291,11 @@Examples
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), #> data = as.data.frame(x), weights = weights) #> -#> Residuals: -#> Min 1Q Median 3Q Max -#> -49.297 -6.658 0.669 7.315 29.826 -#> #> Coefficients: -#> Estimate Std. Error t value Pr(>|t|) -#> (Intercept) 73.9849 6.2081 11.918 1.16e-15 *** -#> INC -1.5889 0.3564 -4.458 5.28e-05 *** -#> lag.INC -1.0859 0.4812 -2.257 0.0288 * -#> --- -#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#> -#> Residual standard error: 11.65 on 46 degrees of freedom -#> Multiple R-squared: 0.5353, Adjusted R-squared: 0.5151 -#> F-statistic: 26.49 on 2 and 46 DF, p-value: 2.214e-08 +#> Estimate Std. Error t value Pr(>|t|) +#> (Intercept) 7.398e+01 6.208e+00 1.192e+01 1.155e-15 +#> INC -1.589e+00 3.564e-01 -4.458e+00 5.276e-05 +#> lag.INC -1.086e+00 4.812e-01 -2.257e+00 2.882e-02 #> summary(impacts(COL.SLX)) #> Impact measures (SlX, glht, n-k): diff --git a/docs/reference/SpatialFiltering.html b/docs/reference/SpatialFiltering.html index 0438ab7..8848dff 100644 --- a/docs/reference/SpatialFiltering.html +++ b/docs/reference/SpatialFiltering.html @@ -17,7 +17,7 @@
Bayesian MCMC spatial simultaneous autoregressive model estimation
lmSLX()
create_WX()
impacts(<SlX>)
print(<WXimpact>)
summary(<WXimpact>)
predict(<SlX>)
lmSLX()
print(<SlX>)
summary(<SlX>)
print(<summary.SlX>)
impacts(<SlX>)
print(<WXimpact>)
summary(<WXimpact>)
predict(<SlX>)
create_WX()
Spatial Durbin linear (SLX, spatially lagged X) model