-
Notifications
You must be signed in to change notification settings - Fork 0
/
TeproAlgo.py
411 lines (331 loc) · 13.5 KB
/
TeproAlgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Author: Radu Ion (radu@racai.ro)
# Developed for the TEPROLIN project
# (C) ICIA 2018-2020
import sys
import inspect
from pathlib import Path
class TeproOp(object):
"""This class represents a TEPROLIN operation, e.g.
POS tagging or dependency parsing. It can be carried
out by a number of algorithms and it has a number of
prerequisites so that it can be performed."""
def __init__(self, opname: str) -> None:
self._opName = opname
self._opNeeds = []
self._opDoers = []
self._opAlgo = None
def addDependency(self, teproop) -> None:
"""Adds an operation that has to be performed
so that this one can be applied; teproop is of type of this class."""
self._opNeeds.append(teproop)
def getDependencies(self) -> list:
return self._opNeeds
def addAlgorithm(self, algoname: str) -> None:
"""Adds an NLP application that implements this operation."""
self._opDoers.append(algoname)
def setDefaultAlgorithm(self, algoname: str) -> None:
"""Sets the default NLP application to run to get this
operation done."""
self._opAlgo = algoname
def getAlgorithms(self) -> list:
return self._opDoers
def getDefaultAlgorithm(self) -> str:
if self._opAlgo:
return self._opAlgo
elif self._opDoers and len(self._opDoers) == 1:
self._opAlgo = self._opDoers[0]
return self._opAlgo
else:
raise RuntimeError("No default algorithm is set for operation '{0}'!".format(self._opName))
def __str__(self) -> str:
return self._opName
def __eq__(self, o: object) -> bool:
return isinstance(o, TeproOp) and self._opName == o._opName
class TeproAlgo(object):
"""This class will hold the list of available
TEPROLIN NLP algorithms (or applications/apps).
Add new ones here!"""
# Does space and dash normalization, Romanian diacritic
# normalization (i.e. using ș/ț instead of ş/ţ)
algoTNorm = "tnorm-icia"
# Does sentence splitting, tokenization, POS tagging,
# lemmatization and chunking.
algoTTL = "ttl-icia"
# Does sentence splitting, tokenization, POS tagging,
# lemmatization and dependency parsing.
algoCube = "nlp-cube-adobe"
# Does sentence splitting, tokenization, POS tagging,
# lemmatization and dependency parsing.
algoUDPipe = "udpipe-ufal"
# Does Romanian diacritic restoration.
algoDiac = "diac-restore-icia"
# Does word hyphenation, accent detection,
# and phonetic transcription.
# Also, expands numerals
# acronyms and abbreviations (not yet, but soon).
algoTTS = "mlpla-icia"
# Provides Named Entity Recognition
algoNER = "ner-icia"
# Provides biomedical Named Entity Recognition
algoBNER = "bioner-icia"
# Maps operation names to TeproOp objects
opName2Obj = {}
@staticmethod
def getTextNormOperName() -> str:
return "text-normalization"
@staticmethod
def getDiacRestorationOperName() -> str:
return "diacritics-restoration"
@staticmethod
def getHyphenationOperName() -> str:
return "word-hyphenation"
@staticmethod
def getStressIdentificationOperName() -> str:
return "word-stress-identification"
@staticmethod
def getPhoneticTranscriptionOperName() -> str:
return "word-phonetic-transcription"
@staticmethod
def getNumeralRewritingOperName() -> str:
return "numeral-rewriting"
@staticmethod
def getAbbreviationRewritingOperName() -> str:
return "abbreviation-rewriting"
@staticmethod
def getSentenceSplittingOperName() -> str:
return "sentence-splitting"
@staticmethod
def getTokenizationOperName() -> str:
return "tokenization"
@staticmethod
def getPOSTaggingOperName() -> str:
return "pos-tagging"
@staticmethod
def getLemmatizationOperName() -> str:
return "lemmatization"
@staticmethod
def getNamedEntityRecognitionOperName() -> str:
return "named-entity-recognition"
@staticmethod
def getBiomedicalNamedEntityRecognitionOperName() -> str:
return "biomedical-named-entity-recognition"
@staticmethod
def getChunkingOperName() -> str:
return "chunking"
@staticmethod
def getDependencyParsingOperName() -> str:
return "dependency-parsing"
@staticmethod
def getAvailableOperations() -> list:
"""Will return the ordered list of available operations.
If op i is requested, usually all ops 0:i-1 have to be performed as well,
but not necessarily."""
return [
TeproAlgo.getTextNormOperName(),
TeproAlgo.getDiacRestorationOperName(),
TeproAlgo.getSentenceSplittingOperName(),
TeproAlgo.getTokenizationOperName(),
TeproAlgo.getHyphenationOperName(),
TeproAlgo.getStressIdentificationOperName(),
TeproAlgo.getPhoneticTranscriptionOperName(),
TeproAlgo.getAbbreviationRewritingOperName(),
TeproAlgo.getNumeralRewritingOperName(),
TeproAlgo.getPOSTaggingOperName(),
TeproAlgo.getLemmatizationOperName(),
TeproAlgo.getNamedEntityRecognitionOperName(),
TeproAlgo.getChunkingOperName(),
TeproAlgo.getDependencyParsingOperName(),
TeproAlgo.getBiomedicalNamedEntityRecognitionOperName()
]
@staticmethod
def getAvailableAlgorithms() -> list:
"""Will return a list of recognized NLP apps."""
return [
TeproAlgo.algoCube,
TeproAlgo.algoUDPipe,
TeproAlgo.algoDiac,
TeproAlgo.algoTNorm,
TeproAlgo.algoTTL,
TeproAlgo.algoTTS,
TeproAlgo.algoNER,
TeproAlgo.algoBNER
]
# Do not forget to update this method with new requirements!
@staticmethod
def _getAlgorithmRequirements() -> dict:
"""Will return a dictionary with keys from the return
list of getAvailableAlgorithms() and values from the same
list, if some algorithm REQUIRES other(s) to be run first."""
requirements = {}
requirements[TeproAlgo.algoNER] = [TeproAlgo.algoTTL]
return requirements
@staticmethod
def getAlgorithmsForOper(oper) -> list:
if oper in TeproAlgo.opName2Obj:
return TeproAlgo.opName2Obj[oper].getAlgorithms()
else:
return []
@staticmethod
def getOperationsForAlgo(algo) -> list:
cando = []
if algo in TeproAlgo.getAvailableAlgorithms():
for op in TeproAlgo.getAvailableOperations():
if TeproAlgo.canPerform(algo, op):
cando.append(op)
return cando
else:
raise RuntimeError("NLP app '" + algo +
"' is not recognized. See class TeproAlgo.")
@staticmethod
def canPerform(algo: str, oper: str) -> bool:
return oper in TeproAlgo.opName2Obj and algo in TeproAlgo.opName2Obj[oper].getAlgorithms()
@staticmethod
def getDefaultAlgoForOper(oper) -> str:
if oper in TeproAlgo.opName2Obj:
return TeproAlgo.opName2Obj[oper].getDefaultAlgorithm()
else:
raise RuntimeError("Operation '" + oper +
"' is not recognized. See class TeproAlgo.")
@staticmethod
def resolveDependencies(operations: list) -> list:
"""Will fill in the transitive closure for list operations,
given known operations dependencies. The result is placed
inside the argument list."""
expanded = []
for op in operations:
expanded.append(op)
for np in TeproAlgo.opName2Obj[op].getDependencies():
npn = str(np)
if npn not in operations:
expanded.append(npn)
# end for np
# end for op
if len(operations) == len(expanded):
# Sort operations as per order specified by getAvailableOperations()
allOperations = TeproAlgo.getAvailableOperations()
operations.sort(key=lambda x: allOperations.index(x))
return operations
else:
return TeproAlgo.resolveDependencies(expanded)
@staticmethod
def reconfigureWithStrictRequirements(conf: dict, requested: list) -> None:
"""Will check strict algorithm dependency requirements,
and will set them appropriately in conf, iterating through requested."""
requirements = TeproAlgo._getAlgorithmRequirements()
todo_ops = {}
for op in requested:
algo = conf[op]
if algo in requirements:
for ralgo in requirements[algo]:
for op2 in TeproAlgo.getOperationsForAlgo(ralgo):
if op2 not in todo_ops:
todo_ops[op2] = ralgo
elif ralgo != todo_ops[op2]:
raise RuntimeError('Operation {0} is about to be rewritten with a conflicting algorithm: {1} != {2}'.format(
op2, todo_ops[op2], ralgo))
# end if
# end for op2
# end for ralgo
# end if algo is special
# end for op in configuration
for op in todo_ops:
conf[op] = todo_ops[op]
print(("{0}.{1}[{2}]: " +
"reconfiguring operation '{3}' with algorithm '{4}'").
format(
Path(inspect.stack()[0].filename).stem,
inspect.stack()[0].function,
inspect.stack()[0].lineno,
op,
todo_ops[op]
), file=sys.stderr, flush=True)
# end for all modified ops
@staticmethod
def _assignAlgorithmsToOperations():
"""Constructs the operation dependency graph."""
operations = []
tn = TeproOp(TeproAlgo.getTextNormOperName())
tn.addAlgorithm(TeproAlgo.algoTNorm)
operations.append(tn)
dr = TeproOp(TeproAlgo.getDiacRestorationOperName())
dr.addAlgorithm(TeproAlgo.algoDiac)
dr.addDependency(tn)
operations.append(dr)
ss = TeproOp(TeproAlgo.getSentenceSplittingOperName())
ss.addAlgorithm(TeproAlgo.algoUDPipe)
ss.addAlgorithm(TeproAlgo.algoTTL)
ss.addAlgorithm(TeproAlgo.algoCube)
ss.setDefaultAlgorithm(TeproAlgo.algoUDPipe)
ss.addDependency(dr)
operations.append(ss)
tk = TeproOp(TeproAlgo.getTokenizationOperName())
tk.addAlgorithm(TeproAlgo.algoUDPipe)
tk.addAlgorithm(TeproAlgo.algoTTL)
tk.addAlgorithm(TeproAlgo.algoCube)
tk.setDefaultAlgorithm(TeproAlgo.algoUDPipe)
tk.addDependency(ss)
operations.append(tk)
pt = TeproOp(TeproAlgo.getPOSTaggingOperName())
pt.addAlgorithm(TeproAlgo.algoUDPipe)
pt.addAlgorithm(TeproAlgo.algoTTL)
pt.addAlgorithm(TeproAlgo.algoCube)
pt.setDefaultAlgorithm(TeproAlgo.algoUDPipe)
pt.addDependency(tk)
operations.append(pt)
lm = TeproOp(TeproAlgo.getLemmatizationOperName())
lm.addAlgorithm(TeproAlgo.algoUDPipe)
lm.addAlgorithm(TeproAlgo.algoTTL)
lm.addAlgorithm(TeproAlgo.algoCube)
lm.setDefaultAlgorithm(TeproAlgo.algoUDPipe)
lm.addDependency(pt)
operations.append(lm)
ck = TeproOp(TeproAlgo.getChunkingOperName())
ck.addAlgorithm(TeproAlgo.algoTTL)
ck.addDependency(pt)
operations.append(ck)
dp = TeproOp(TeproAlgo.getDependencyParsingOperName())
dp.addAlgorithm(TeproAlgo.algoUDPipe)
dp.addAlgorithm(TeproAlgo.algoCube)
dp.setDefaultAlgorithm(TeproAlgo.algoUDPipe)
dp.addDependency(lm)
operations.append(dp)
hy = TeproOp(TeproAlgo.getHyphenationOperName())
hy.addAlgorithm(TeproAlgo.algoTTS)
hy.addDependency(tk)
operations.append(hy)
ac = TeproOp(TeproAlgo.getStressIdentificationOperName())
ac.addAlgorithm(TeproAlgo.algoTTS)
ac.addDependency(tk)
operations.append(ac)
ph = TeproOp(TeproAlgo.getPhoneticTranscriptionOperName())
ph.addAlgorithm(TeproAlgo.algoTTS)
ph.addDependency(tk)
operations.append(ph)
nr = TeproOp(TeproAlgo.getNumeralRewritingOperName())
nr.addAlgorithm(TeproAlgo.algoTTS)
nr.addDependency(tk)
operations.append(nr)
ar = TeproOp(TeproAlgo.getAbbreviationRewritingOperName())
ar.addAlgorithm(TeproAlgo.algoTTS)
ar.addDependency(tk)
operations.append(ar)
er = TeproOp(TeproAlgo.getNamedEntityRecognitionOperName())
er.addAlgorithm(TeproAlgo.algoNER)
er.addDependency(lm)
operations.append(er)
ber = TeproOp(TeproAlgo.getBiomedicalNamedEntityRecognitionOperName())
ber.addAlgorithm(TeproAlgo.algoBNER)
ber.addDependency(dp)
operations.append(ber)
for op in operations:
TeproAlgo.opName2Obj[str(op)] = op
# Some sanity checks
# 1. All operations are in the list, no invented names.
for op in TeproAlgo.getAvailableOperations():
assert op in TeproAlgo.opName2Obj
# 2. All of them are covered by definitions
assert len(TeproAlgo.getAvailableOperations()) == len(TeproAlgo.opName2Obj)
# 3. All operations have a default algorithm
for op in operations:
op.getDefaultAlgorithm()
TeproAlgo._assignAlgorithmsToOperations()