forked from mr-andreas/neuralnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNeuralNet.cpp
244 lines (192 loc) · 6.2 KB
/
CNeuralNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include "CNeuralNet.h"
const double D_BIAS = -1.0;
const double D_ACTIVE_RESPONSE = 1.0;
//*************************** methods for Neuron **********************
//
//---------------------------------------------------------------------
SNeuron::SNeuron(int NumInputs): m_NumInputs(NumInputs+1)
{
//we need an additional weight for the bias hence the +1
for (int i=0; i<NumInputs+1; ++i)
{
//set up the weights with an initial random value
m_vecWeight.push_back(RandomClamped());
}
}
//************************ methods for NeuronLayer **********************
//-----------------------------------------------------------------------
// ctor creates a layer of neurons of the required size by calling the
// SNeuron ctor the rqd number of times
//-----------------------------------------------------------------------
SNeuronLayer::SNeuronLayer(int NumNeurons,
int NumInputsPerNeuron): m_NumNeurons(NumNeurons)
{
for (int i=0; i<NumNeurons; ++i)
m_vecNeurons.push_back(SNeuron(NumInputsPerNeuron));
}
//************************ methods forCNeuralNet ************************
//------------------------------default ctor ----------------------------
//
// creates a ANN based on the default values in params.ini
//-----------------------------------------------------------------------
CNeuralNet::CNeuralNet()
{
m_NumInputs = 4;
m_NumOutputs = 2;
m_NumHiddenLayers = 1;
m_NeuronsPerHiddenLyr = 6;
CreateNet();
}
//------------------------------createNet()------------------------------
//
// this method builds the ANN. The weights are all initially set to
// random values -1 < w < 1
//------------------------------------------------------------------------
void CNeuralNet::CreateNet()
{
//create the layers of the network
if (m_NumHiddenLayers > 0)
{
//create first hidden layer
m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr, m_NumInputs));
for (int i=0; i<m_NumHiddenLayers-1; ++i)
{
m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr,
m_NeuronsPerHiddenLyr));
}
//create output layer
m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NeuronsPerHiddenLyr));
}
else
{
//create output layer
m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NumInputs));
}
}
//---------------------------------GetWeights-----------------------------
//
// returns a vector containing the weights
//
//------------------------------------------------------------------------
vector<double> CNeuralNet::GetWeights() const
{
//this will hold the weights
vector<double> weights;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
{
weights.push_back(m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k]);
}
}
}
return weights;
}
//-----------------------------------PutWeights---------------------------
//
// given a vector of doubles this function replaces the weights in the NN
// with the new values
//
//------------------------------------------------------------------------
void CNeuralNet::PutWeights(vector<double> &weights)
{
int cWeight = 0;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
{
m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k] = weights[cWeight++];
}
}
}
return;
}
//---------------------------------GetNumberOfWeights---------------------
//
// returns the total number of weights needed for the net
//
//------------------------------------------------------------------------
int CNeuralNet::GetNumberOfWeights() const
{
int weights = 0;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
weights++;
}
}
return weights;
}
//-------------------------------Update-----------------------------------
//
// given an input vector this function calculates the output vector
//
//------------------------------------------------------------------------
vector<double> CNeuralNet::Update(vector<double> &inputs)
{
//stores the resultant outputs from each layer
vector<double> outputs;
int cWeight = 0;
//first check that we have the correct amount of inputs
if (inputs.size() != m_NumInputs)
{
//just return an empty vector if incorrect.
return outputs;
}
//For each layer....
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
if ( i > 0 )
{
inputs = outputs;
}
outputs.clear();
cWeight = 0;
//for each neuron sum the (inputs * corresponding weights).Throw
//the total at our sigmoid function to get the output.
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
double netinput = 0;
int NumInputs = m_vecLayers[i].m_vecNeurons[j].m_NumInputs;
//for each weight
for (int k=0; k<NumInputs - 1; ++k)
{
//sum the weights x inputs
netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k] *
inputs[cWeight++];
}
//add in the bias
netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[NumInputs-1] *
D_BIAS;
//we can store the outputs from each layer as we generate them.
//The combined activation is first filtered through the sigmoid
//function
outputs.push_back(Sigmoid(netinput,
D_ACTIVE_RESPONSE));
cWeight = 0;
}
}
return outputs;
}
//-------------------------------Sigmoid function-------------------------
//
//------------------------------------------------------------------------
double CNeuralNet::Sigmoid(double netinput, double response)
{
return ( 1 / ( 1 + exp(-netinput / response)));
}