-
Notifications
You must be signed in to change notification settings - Fork 0
/
4sx4p.pov
174 lines (130 loc) · 3.67 KB
/
4sx4p.pov
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// 4 sphere Chaotic Scattering experiment.
// Copyright (C) R Radev
// 10.Jan.2002
#version 3.7;
global_settings{
max_trace_level 256
assumed_gamma 2.2
}
#include "colors.inc"
#declare R = 3.00000; // sphere radius
#declare aa = 100.0;
#declare bb = 30.0;
#if (frame_number <= 600) // Sphere rotation
#local RRR = 180*(600-frame_number)/600;
#end
#if (frame_number > 600)
#local RRR = 0;
#end
#if (frame_number <= 600)
#local aaa = 40; // camera location
#local bbb = 10 + (20/600 * frame_number); // camera zoom
#local ccc = 0 ; // look_at point
#local vvv = 0 ; // look_at point
#end
#if ((frame_number > 600)&(frame_number <= 800)) // Change numbers below to find interesting points.
#local aaa = 40 - 32*(frame_number-600)/200;
#local bbb = bb / pow(2, ((frame_number-600)*0.01));
#local ccc = 0.0;
#local vvv = 0.0;
#end
#if ((frame_number > 800)&(frame_number <=1000))
#local aaa = 8 - 7.5*(frame_number-800)/200;
#local bbb = bb / 4;
#local ccc = -0.490784467761 * (frame_number-800)/200;
#local vvv = -1.002277127387 * (frame_number-800)/200;
#end
#if (frame_number > 1000)
#local aaa = 0.5;
#local bbb = bb / pow(2, ((frame_number-800)*0.01));
//#local bbb = bb/0.8;
#local ccc = -0.490784467761; // magic points
#local vvv = -1.002277127387;
#end
#declare TT = 1.414213562373095048801688724209; // sqrt(2)
#declare CRadius = R * TT;
#declare CameraLocation = <-aaa,-aaa,-aaa> ;
#declare Camera_1 = camera {
angle bbb
sky z
right -x*image_width/image_height
location CameraLocation
look_at <-vvv, vvv, ccc> // First sphere center.
}
camera{Camera_1}
#declare DefaultFinish = finish {
ambient 0.0
diffuse 0.00
//specular 1.0
roughness 0.000001
metallic
reflection {1.0 metallic 1.0} ambient 0 diffuse 0
}
#declare PlaneFinish = finish {
ambient 0.6
diffuse 0.2
reflection 0.0
brilliance 0.3
specular 0.4
}
#declare Sphere_Color = color rgb <1.0, 1.0, 1.0> ;
union {
sphere {
<0,0,0>, CRadius translate <R,R,R>
}
sphere {
<0,0,0>, CRadius translate <R,-R,-R>
}
sphere {
<0,0,0>, CRadius translate <-R,R,-R>
}
sphere {
<0,0,0>, CRadius translate <-R,-R,R>
}
pigment { Sphere_Color } finish { DefaultFinish }
rotate <0,RRR,0>
}
#declare RR = 10000;
#declare IN = 0.9;
#declare Lightplane1 = plane { <-RR,-RR,-RR>, 1
pigment { Scarlet }
finish { PlaneFinish }
}
#declare Lightplane2 = plane { <-RR,RR,RR> , 1
pigment { BrightGold }
finish { PlaneFinish }
}
#declare Lightplane3 = plane {<RR,-RR,RR>, 1
pigment { Orange }
finish { PlaneFinish }
}
#declare Lightplane4 = plane { <RR,RR,-RR>, 1
pigment { OrangeRed }
finish { PlaneFinish }
}
union {
light_source {
<-RR,-RR,-RR>
color rgb < IN, IN, IN >
looks_like { Lightplane1 }
photons {refraction off reflection on}
}
light_source {
<-RR,RR,RR>
color rgb < IN, IN, IN >
looks_like { Lightplane2 }
photons {refraction off reflection on}
}
light_source {
<RR,-RR,RR>
color rgb < IN, IN, IN >
looks_like { Lightplane3 }
photons {refraction off reflection on}
}
light_source {
<RR,RR,-RR>
color rgb < IN, IN, IN >
looks_like { Lightplane4 }
photons {refraction off reflection on}
}
}