-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathrand.c
567 lines (410 loc) · 12.1 KB
/
rand.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/* RAND.C - Random number generation module. */
/* Copyright (c) 1995-2012 by Radford M. Neal.
*
* Permission is granted for anyone to copy, use, modify, and distribute
* these programs and accompanying documents for any purpose, provided
* this copyright notice is retained and prominently displayed, and note
* is made of any changes made to these programs. These programs and
* documents are distributed without any warranty, express or implied.
* As the programs were written for research purposes only, they have not
* been tested to the degree that would be advisable in any important
* application. All use of these programs is entirely at the user's own
* risk.
*/
/* Random generation routines at the end of this file are taken from the
GNU C library, see the copyright notice there. */
/* NOTE: See rand.html for documentation on these procedures. */
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "rand.h"
static long int this_nrand48 (unsigned short int [3]);
/* Local version of nrand48 */
/* This module uses the 'this_nrand48' pseudo-random number generator from the
GNU C library, included below, but renamed to 'this_nrand48'. The
output of this generator is combined with a file of real random numbers.
Many of the methods used in this module may be found in the following
reference:
Devroye, L. (1986) Non-Uniform Random Variate Generation,
New York: Springer-Verlag.
The methods used here are not necessarily the fastest available. They're
selected to be reasonably fast while also being easy to write.
*/
/* CONSTANT PI. Defined here if not in <math.h>. */
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* TABLES OF REAL RANDOM NUMBERS. A file of 100000 real random numbers
(NOT pseudo-random) is used in conjunction with pseudo-random numbers
for extra insurance. These are employed in the form of five tables
of 5000 32-bit integers.
The file must be located at the path given by RAND_FILE, which should
be defined on the "cc" command line. */
#define Table_size 5000 /* Number of words in each table */
static int rn[N_tables][Table_size]; /* Random number tables */
/* STATE OF RANDOM NUMBER GENERATOR. */
static int initialized = 0; /* Has module been initialized? */
static rand_state state0; /* Default state structure */
static rand_state *state; /* Pointer to current state */
/* INITIALIZE MODULE. Sets things up using the default state structure,
set as if rand_seed had been called with a seed of one. */
static void initialize (void)
{
int i, j, k, w;
char b;
FILE *f;
if (!initialized)
{
f = fopen(RAND_FILE,"rb");
if (f==NULL)
{ fprintf(stderr,"Can't open file of random numbers (%s)\n",RAND_FILE);
exit(1);
}
for (i = 0; i<N_tables; i++)
{ for (j = 0; j<Table_size; j++)
{ w = 0;
for (k = 0; k<4; k++)
{ if (fread(&b,1,1,f)!=1)
{ fprintf(stderr,"Error reading file of random numbers (%s)\n",
RAND_FILE);
exit(1);
}
w = (w<<8) | (b&0xff);
}
rn[i][j] = w;
}
}
state = &state0;
initialized = 1;
rand_seed(1);
}
}
/* SET CURRENT STATE ACCORDING TO SEED. */
void rand_seed
( int seed
)
{
int j;
if (!initialized) initialize();
state->seed = seed;
state->state48[0] = seed>>16;
state->state48[1] = seed&0xffff;
state->state48[2] = rn[0][(seed&0x7fffffff)%Table_size];
for (j = 0; j<N_tables; j++)
{ state->ptr[j] = seed%Table_size;
seed /= Table_size;
}
}
/* SET STATE STRUCTURE TO USE. */
void rand_use_state
( rand_state *st
)
{
if (!initialized) initialize();
state = st;
}
/* RETURN POINTER TO CURRENT STATE. */
rand_state *rand_get_state (void)
{
if (!initialized) initialize();
return state;
}
/* GENERATE RANDOM 31-BIT INTEGER. Not really meant for use outside this
module. */
int rand_word(void)
{
int v;
int j;
if (!initialized) initialize();
v = this_nrand48(state->state48);
for (j = 0; j<N_tables; j++)
{ v ^= rn[j][state->ptr[j]];
}
for (j = 0; j<N_tables && state->ptr[j]==Table_size-1; j++)
{ state->ptr[j] = 0;
}
if (j<N_tables)
{ state->ptr[j] += 1;
}
return v & 0x7fffffff;
}
/* GENERATE UNIFORMLY FROM [0,1). */
double rand_uniform (void)
{
return (double)rand_word() / (1.0+(double)0x7fffffff);
}
/* GENERATE UNIFORMLY FORM (0,1). */
double rand_uniopen (void)
{
return (0.5+(double)rand_word()) / (1.0+(double)0x7fffffff);
}
/* GENERATE RANDOM INTEGER FROM 0, 1, ..., (n-1). */
int rand_int
( int n
)
{
return (int) (n * rand_uniform());
}
/* GENERATE INTEGER FROM 0, 1, ..., (n-1), WITH GIVEN DISTRIBUTION. */
int rand_pickd
( double *p,
int n
)
{
double t, r;
int i;
t = 0;
for (i = 0; i<n; i++)
{ if (p[i]<0) abort();
t += p[i];
}
if (t<=0) abort();
r = t * rand_uniform();
for (i = 0; i<n; i++)
{ r -= p[i];
if (r<0) return i;
}
/* Return value with non-zero probability if we get here due to roundoff. */
for (i = 0; i<n; i++)
{ if (p[i]>0) return i;
}
abort();
}
/* SAME PROCEDURE AS ABOVE, BUT WITH FLOAT ARGUMENT. */
int rand_pickf
( float *p,
int n
)
{
double t, r;
int i;
t = 0;
for (i = 0; i<n; i++)
{ if (p[i]<=0) abort();
t += p[i];
}
if (t<=0) abort();
r = t * rand_uniform();
for (i = 0; i<n; i++)
{ r -= p[i];
if (r<0) return i;
}
/* Return value with non-zero probability if we get here due to roundoff. */
for (i = 0; i<n; i++)
{ if (p[i]>0) return i;
}
abort();
}
/* GENERATE RANDOM PERMUTATION OF INTEGERS FROM 1 TO N. */
void rand_permutation
( int *perm, /* Place to store permutation */
int n /* Number of integers to permute */
)
{
int i, j, t;
for (i = 0; i<n; i++)
{ perm[i] = i+1;
}
for (i = 0; i<n; i++)
{ t = perm[i];
j = i + rand_int(n-i);
perm[i] = perm[j];
perm[j] = t;
}
}
/* POISSON GENERATOR. The method used is simple, but not very fast. See
Devroye, p. 503. Very large means are done using Gaussian approximation. */
int rand_poisson
( double lambda
)
{ int v;
if (lambda>10000)
{ v = (int) (lambda + rand_gaussian()*sqrt(lambda) + 0.5);
}
else
{ v = 0;
for (;;)
{ lambda -= rand_exp();
if (lambda<=0) break;
v += 1;
}
}
return v;
}
/* GAUSSIAN GENERATOR. Done by using the Box-Muller method, but only one
of the variates is retained (using both would require saving more state).
See Devroye, p. 235.
As written, should never deliver exactly zero, which may sometimes be
helpful. */
double rand_gaussian (void)
{
double a, b;
a = rand_uniform();
b = rand_uniopen();
return cos(2.0*M_PI*a) * sqrt(-2.0*log(b));
}
/* EXPONENTIAL GENERATOR. See Devroye, p. 29. Written so as to never
return exactly zero. */
double rand_exp (void)
{
return -log(rand_uniopen());
}
/* LOGISTIC GENERATOR. Just inverts the CDF. */
double rand_logistic (void)
{ double u;
u = rand_uniopen();
return log(u/(1-u));
}
/* CAUCHY GENERATOR. See Devroye, p. 29. */
double rand_cauchy (void)
{
return tan (M_PI * (rand_uniopen()-0.5));
}
/* GAMMA GENERATOR. Generates a positive real number, r, with density
proportional to r^(a-1) * exp(-r). See Devroye, p. 410 and p. 420.
Things are fiddled to avoid ever returning a value that is very near
zero. */
double rand_gamma
( double a
)
{
double b, c, X, Y, Z, U, V, W;
if (a<0.00001)
{ X = a;
}
else if (a<=1)
{
U = rand_uniopen();
X = rand_gamma(1+a) * pow(U,1/a);
}
else if (a<1.00001)
{ X = rand_exp();
}
else
{
b = a-1;
c = 3*a - 0.75;
for (;;)
{
U = rand_uniopen();
V = rand_uniopen();
W = U*(1-U);
Y = sqrt(c/W) * (U-0.5);
X = b+Y;
if (X>=0)
{
Z = 64*W*W*W*V*V;
if (Z <= 1 - 2*Y*Y/X || log(Z) <= 2 * (b*log(X/b) - Y)) break;
}
}
}
return X<1e-30 && X<a ? (a<1e-30 ? a : 1e-30) : X;
}
/* BETA GENERATOR. Generates a real number, r, in (0,1), with density
proportional to r^(a-1) * (1-r)^(b-1). Things are fiddled to avoid
the end-points, and to make the procedure symmetric between a and b. */
double rand_beta
( double a,
double b
)
{
double x, y, r;
do
{ x = rand_gamma(a);
y = rand_gamma(b);
r = 1.0 + x/(x+y);
r = r - 1.0;
} while (r<=0.0 || r>=1.0);
return r;
}
/* ROUTINES FROM THE GNU C LIBRARY. These were modified to extract
only the routines used here, and to allow them to be included in
this module without any possible name conflict with other modules.
Inclusion here ensures that these routines are always available, and
operate in exactly the same way on all systems. The routines as copied
below are still easily useable by other programs by simply inserting
this source code into an appropriate source file.
The following is the copyright notice for these routines:
Copyright (C) 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, August 1995.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
The GNU Lesser General Public License is included with these source
files in the file LGPL. */
#include <errno.h>
#include <limits.h>
#include <sys/types.h>
struct this_drand48_data
{
unsigned short int x[3]; /* Current state. */
unsigned short int old_x[3]; /* Old state. */
unsigned short int c; /* Additive const. in congruential formula. */
unsigned short int init; /* Flag for initializing. */
unsigned long long int a; /* Factor in congruential formula. */
};
/* Global state for non-reentrant functions. */
struct this_drand48_data libc_this_drand48_data;
static int this_nrand48_r (unsigned short int xsubi[3],
struct this_drand48_data *buffer,
long int *result);
/* Internal function to compute next state of the generator. */
static int this_drand48_iterate (unsigned short int xsubi[3],
struct this_drand48_data *buffer);
static long int this_nrand48 (xsubi)
unsigned short int xsubi[3];
{
long int result;
(void) this_nrand48_r (xsubi, &libc_this_drand48_data, &result);
return result;
}
static int this_nrand48_r (xsubi, buffer, result)
unsigned short int xsubi[3];
struct this_drand48_data *buffer;
long int *result;
{
/* Compute next state. */
if (this_drand48_iterate (xsubi, buffer) < 0)
return -1;
/* Store the result. */
if (sizeof (unsigned short int) == 2)
*result = xsubi[2] << 15 | xsubi[1] >> 1;
else
*result = xsubi[2] >> 1;
return 0;
}
static int this_drand48_iterate (xsubi, buffer)
unsigned short int xsubi[3];
struct this_drand48_data *buffer;
{
uint64_t X;
uint64_t result;
/* Initialize buffer, if not yet done. */
if (!buffer->init)
{
buffer->a = 0x5deece66dull;
buffer->c = 0xb;
buffer->init = 1;
}
/* Do the real work. We choose a data type which contains at least
48 bits. Because we compute the modulus it does not care how
many bits really are computed. */
X = (uint64_t) xsubi[2] << 32 | (uint32_t) xsubi[1] << 16 | xsubi[0];
result = X * buffer->a + buffer->c;
xsubi[0] = result & 0xffff;
xsubi[1] = (result >> 16) & 0xffff;
xsubi[2] = (result >> 32) & 0xffff;
return 0;
}