forked from furtherAdu/CPH200A_24_project2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdispatcher.py
181 lines (146 loc) · 5.77 KB
/
dispatcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import json
import random
import os, subprocess
from csv import DictWriter
import multiprocessing
import itertools
import matplotlib.pyplot as plt
def add_main_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument(
"--config_path",
type=str,
default="grid_search.json",
help="Location of config file"
)
parser.add_argument(
"--num_workers",
type=int,
default=10,
help="Number of processes to run in parallel"
)
parser.add_argument(
"--log_dir",
type=str,
default="logs",
help="Location of experiment logs and results"
)
parser.add_argument(
"--grid_search_results_path",
default="grid_results.csv",
help="Where to save grid search results"
)
return parser
def get_experiment_list(config: dict) -> (list[dict]):
'''
Parses an experiment config, and creates jobs. For flags that are expected to be a single item, but the config contains a list, this will return one job for each item in the list.
:config - experiment_config
returns: jobs - a list of dicts, each of which encapsulates one job.
*Example: {learning_rate: 0.001 , batch_size: 16 ...}
'''
# TODO: Go through the tree of possible jobs and enumerate into a list of jobs
jobs = []
# Extract parameter names and their corresponding values
param_names = config.keys()
param_values = [config[param] for param in param_names]
# Create combinations of all parameters
for values in itertools.product(*param_values):
job = dict(zip(param_names, values))
if all(key in job for key in param_names):
jobs.append(job)
else:
print(f"Generated job is missing keys: {job}")
return jobs
def worker(args: argparse.Namespace, job_queue: multiprocessing.Queue, done_queue: multiprocessing.Queue):
'''
Worker thread for each worker. Consumes all jobs and pushes results to done_queue.
:args - command line args
:job_queue - queue of available jobs.
:done_queue - queue where to push results.
'''
while not job_queue.empty():
params = job_queue.get()
if params is None:
return
done_queue.put(
launch_experiment(args, params))
def launch_experiment(args: argparse.Namespace, experiment_config: dict) -> dict:
'''
Launch an experiment and direct logs and results to a unique filepath.
:configs: flags to use for this model run. Will be fed into
scripts/main.py
returns: flags for this experiment as well as result metrics
'''
print("Launching experiment with config:", experiment_config)
# TODO: Launch the experiment
if not os.path.isdir(args.log_dir):
os.makedirs(args.log_dir)
#Create unique results path
param_string = "_".join(f"{key}_{value}" for key, value in experiment_config.items())
# Construct the command to run the experiment
command = [
"python", "main.py", # Path to the main script to run
"--learning_rate", str(experiment_config["learning_rate"]),
"--batch_size", str(experiment_config["batch_size"]),
"--num_epochs", str(experiment_config["num_epochs"]),
"--regularization_lambda", str(experiment_config["regularization_lambda"]),
"--results_path", param_string
]
# TODO: Parse the results from the experiment and return them as a dict
# Execute the command
result = subprocess.run(command, capture_output=True, text=True)
result_json_path = os.path.join('logs/jsons', f"{param_string}.json")
if result.returncode == 0:
# Assuming main.py outputs metrics as JSON to results_path
with open(result_json_path, 'r') as f:
metrics = json.load(f) # Load metrics from the JSON file
else:
metrics = {"error": result.stderr}
metrics.update(experiment_config) # Combine with experiment config
return metrics
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser = add_main_args(parser)
args = parser.parse_args()
return args
def main(args: argparse.Namespace) -> dict:
print(args)
config = json.load(open(args.config_path, "r"))
print("Starting grid search with the following config:")
print(config)
# TODO: From config, generate a list of experiments to run
experiments = get_experiment_list(config)
random.shuffle(experiments)
job_queue = multiprocessing.Queue()
done_queue = multiprocessing.Queue()
for exper in experiments:
job_queue.put(exper)
print("Launching dispatcher with {} experiments and {} workers".format(len(experiments), args.num_workers))
# TODO: Define worker fn to launch an experiment as a separate process.
workers = []
for _ in range(args.num_workers):
worker_process = multiprocessing.Process(target=worker, args=(args, job_queue, done_queue))
workers.append(worker_process)
worker_process.start()
# Add sentinel values to signal workers to exit
for _ in range(args.num_workers):
job_queue.put(None)
# Accumulate results into a list of dicts
grid_search_results = []
for _ in range(len(experiments)):
grid_search_results.append(done_queue.get())
# Wait for all workers to finish
for w in workers:
w.join()
# Save results to CSV
if grid_search_results:
keys = grid_search_results[0].keys()
with open(args.grid_search_results_path, 'w', newline='') as f:
writer = DictWriter(f, keys)
writer.writeheader()
writer.writerows(grid_search_results)
print("Dispatcher finished")
if __name__ == '__main__':
__spec__ = None
args = parse_args()
main(args)