-
Notifications
You must be signed in to change notification settings - Fork 0
/
advice.qmd
35 lines (29 loc) · 1.01 KB
/
advice.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
title: "Advice"
---
Here is some advice for PhD students in high-energy physics.
$$
d s^2 = - f(r) dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_2^2
$$ {#eq-sch-metric}
Black-Scholes (@eq-black-scholes) is a mathematical model that seeks to explain the behavior of financial derivatives, most commonly options:
$$
\frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2} \mathrm S^{2}
\frac{\partial^{2} \mathrm C}{\partial \mathrm C^2}
+ \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ =
\mathrm r \mathrm C
$$ {#eq-black-scholes}
```{=latex}
\begin{align}
d s^2 &= - f(r) dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_2^2 \\
f(r) &= 1- \frac{r_+}{r} \label{eq-frblackhole}
\end{align}
```
We would like to compute the thermal partition function of this system. Since we know the spectrum, we can write down the answer
```{=tex}
\begin{align}
Z(\beta) = \sum_n e^{-\beta E_n} = \sum_{n\in \mathbb{Z}} \exp \left(
- \beta \, \frac{n^2}{2R^2}
\right) \, .
\label{zbetaparticlering}
\end{align}
```