Skip to content

Latest commit

 

History

History
103 lines (74 loc) · 4.89 KB

docker_compose_tests.rst

File metadata and controls

103 lines (74 loc) · 4.89 KB

Airflow Docker Compose Tests

This document describes how to run tests for Airflow Docker Compose deployment.

The outline for this document in GitHub is available at top-right corner button (with 3-dots and 3 lines).

Running Docker Compose Tests with Breeze

We also test in CI whether the Docker Compose that we expose in our documentation via Running Airflow in Docker works as expected. Those tests are run in CI ("Test docker-compose quick start") and you can run them locally as well.

The way the tests work:

  1. They first build the Airflow production image
  2. Then they take the Docker Compose file of ours and use the image to start it
  3. Then they perform some simple DAG trigger tests which checks whether Airflow is up and can process an example DAG

This is done in a local environment, not in the Breeze CI image. It uses COMPOSE_PROJECT_NAME set to quick-start to avoid conflicts with other docker compose deployments you might have.

The complete test can be performed using Breeze. The prerequisite to that is to have docker-compose (Docker Compose v1) or docker compose plugin (Docker Compose v2) available on the path.

Running complete test with breeze:

breeze prod-image build --python 3.9
breeze testing docker-compose-tests

In case the test fails, it will dump the logs from the running containers to the console and it will shutdown the Docker Compose deployment. In case you want to debug the Docker Compose deployment created for the test, you can pass --skip-docker-compose-deletion flag to Breeze or export SKIP_DOCKER_COMPOSE_DELETION set to "true" variable and the deployment will not be deleted after the test.

You can also specify maximum timeout for the containers with --wait-for-containers-timeout flag. You can also add -s option to the command pass it to underlying pytest command to see the output of the test as it happens (it can be also set via WAIT_FOR_CONTAINERS_TIMEOUT environment variable)

The test can be also run manually with pytest docker_tests/test_docker_compose_quick_start.py command, provided that you have a local airflow venv with dev extra set and the DOCKER_IMAGE environment variable is set to the image you want to test. The variable defaults to ghcr.io/apache/airflow/main/prod/python3.9:latest which is built by default when you run breeze prod-image build --python 3.9. also the switches --skip-docker-compose-deletion and --wait-for-containers-timeout can only be passed via environment variables.

If you want to debug the deployment using docker compose commands after SKIP_DOCKER_COMPOSE_DELETION was used, you should set COMPOSE_PROJECT_NAME to quick-start because this is what the test uses:

export COMPOSE_PROJECT_NAME=quick-start

You can also add --project-name quick-start to the docker compose commands you run. When the test will be re-run it will automatically stop previous deployment and start a new one.

Running Docker Compose deployment manually

You can also (independently of Pytest test) run docker-compose deployment manually with the image you built using the prod image build command above.

export AIRFLOW_IMAGE_NAME=ghcr.io/apache/airflow/main/prod/python3.9:latest

and follow the instructions in the Running Airflow in Docker but make sure to use the docker-compose file from the sources in docs/apache-airflow/stable/howto/docker-compose/ folder.

Then, the usual docker compose and docker commands can be used to debug such running instances. The test performs a simple API call to trigger a DAG and wait for it, but you can follow our documentation to connect to such running docker compose instances and test it manually.


For other kinds of tests look at Testing document