forked from chebfun/chebfun
-
Notifications
You must be signed in to change notification settings - Fork 1
/
aaa.m
434 lines (357 loc) · 12.2 KB
/
aaa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
function [r, pol, res, zer, zj, fj, wj, errvec] = aaa(F, varargin)
%AAA Computes a AAA rational approximation.
% R = AAA(F, Z) computes the AAA rational approximant R (function handle) to
% data F on the set of sample points Z. F may be given by its values at Z,
% or as a function handle or a chebfun.
%
% [R, POL, RES, ZER] = AAA(F, Z) returns vectors of poles POL,
% residues RES, and zeros ZER of R.
%
% [R, POL, RES, ZER, ZJ, FJ, WJ] = AAA(F, Z) also returns the vectors
% of support points ZJ, function values FJ, and weights WJ of the
% barycentric representation of R.
%
% [R, POL, RES, ZER, ZJ, FJ, WJ, ERRVEC] = AAA(F, Z) also returns the
% vector of errors ||f-r||_infty in successive iteration steps of AAA.
%
% R = AAA(F, Z, NAME, VALUE) sets the following parameters:
% - 'tol', TOL: relative tolerance (default TOL = 1e-13),
% - 'mmax', MMAX: maximal number of terms in the barycentric representation
% (default MMAX = 100).
% - 'dom', DOM: domain (default DOM = [-1, 1]). No effect if Z is provided.
% - 'cleanup', 'off' or 0: turns off automatic removal of numerical Froissart
% doublets
%
% One can also execute R = AAA(F), with no specification of a set Z.
% This is equivalent to defining Z = LINSPACE(DOM(1), DOM(2), LENGTH(F)) if F
% is a vector (by default DOM = [-1, 1]).
% If F is a function handle or a chebfun, AAA attempts to resolve F on its
% domain DOM. By default, DOM = [-1, 1] for a function handle, and
% DOM = F.DOMAIN([1, END]) for a chebfun.
%
% Examples:
% r = aaa(@exp); xx = linspace(-1,1); plot(xx,r(xx)-exp(xx))
%
% Z = exp(2i*pi*linspace(0,1,500));
% [r,pol,res] = aaa(@tan,Z); disp([pol res])
%
% Reference:
% [1] Yuji Nakatsukasa, Olivier Sete, Lloyd N. Trefethen, "The AAA algorithm
% for rational approximation", arXiv:1612.00337.
%
% See also CF, CHEBPADE, MINIMAX, PADEAPPROX, RATINTERP.
% Copyright 2017 by The University of Oxford and The Chebfun Developers.
% See http://www.chebfun.org/ for Chebfun information.
% Parse inputs:
[F, Z, M, dom, tol, mmax, cleanup_flag, needZ, mmax_flag] = parseInputs(F, varargin{:});
if ( needZ )
% Z was not provided. Try to resolve F on its domain.
[r, pol, res, zer, zj, fj, wj, errvec] = ...
aaa_autoZ(F, dom, tol, mmax, cleanup_flag, mmax_flag);
return
end
% Remove any infinite or NaN function values (avoid SVD failures):
toKeep = ~isinf(F);
F = F(toKeep); Z = Z(toKeep);
toKeep = ~isnan(F);
F = F(toKeep); Z = Z(toKeep);
M = length(Z);
% Relative tolerance:
reltol = tol * norm(F, inf);
% Left scaling matrix:
SF = spdiags(F, 0, M, M);
% Initialization for AAA iteration:
J = 1:M;
zj = [];
fj = [];
C = [];
errvec = [];
R = mean(F);
% AAA iteration:
for m = 1:mmax
% Select next support point where error is largest:
[~, jj] = max(abs(F - R)); % Select next support point.
zj = [zj; Z(jj)]; % Update support points.
fj = [fj; F(jj)]; % Update data values.
J(J == jj) = []; % Update index vector.
C = [C 1./(Z - Z(jj))]; % Next column of Cauchy matrix.
% Compute weights:
Sf = diag(fj); % Right scaling matrix.
A = SF*C - C*Sf; % Loewner matrix.
[~, ~, V] = svd(A(J,:), 0); % Reduced SVD.
wj = V(:,m); % weight vector = min sing vector
% Rational approximant on Z:
N = C*(wj.*fj); % Numerator
D = C*wj; % Denominator
R = F;
R(J) = N(J)./D(J);
% Error in the sample points:
err = norm(F - R, inf);
errvec = [errvec; err];
% Check if converged:
if ( err <= reltol )
break
end
end
% Note: When M == 2, one weight is zero and r is constant.
% To obtain a good approximation, interpolate in both sample points.
if ( M == 2 )
zj = Z;
fj = F;
wj = [1; -1]; % Only pole at infinity.
wj = wj/norm(wj); % Impose norm(w) = 1 for consistency.
errvec(2) = 0;
end
% Remove support points with zero weight:
I = find(wj == 0);
zj(I) = [];
wj(I) = [];
fj(I) = [];
% Construct function handle:
r = @(zz) reval(zz, zj, fj, wj);
% Compute poles, residues and zeros:
[pol, res, zer] = prz(r, zj, fj, wj);
if ( cleanup_flag )
% Remove Froissart doublets:
[r, pol, res, zer, zj, fj, wj] = cleanup(r, pol, res, zer, zj, fj, wj, Z, F);
end
end % of AAA()
%% parse Inputs:
function [F, Z, M, dom, tol, mmax, cleanup_flag, needZ, mmax_flag] = ...
parseInputs(F, varargin)
% Input parsing for AAA.
% Check if F is empty:
if ( isempty(F) )
error('CHEBFUN:aaa:emptyF', 'No function given.')
elseif ( isa(F, 'chebfun') )
if ( size(F, 2) ~= 1 )
error('CHEBFUN:aaa:nColF', 'Input chebfun must have one column.')
end
end
% Sample points:
if ( ~isempty(varargin) && isfloat(varargin{1}) )
% Z is given.
Z = varargin{1};
if ( isempty(Z) )
error('CHEBFUN:aaa:emptyZ', ...
'If sample set is provided, it must be nonempty.')
end
varargin(1) = [];
end
% Set defaults for other parameters:
tol = 1e-13; % Relative tolerance.
mmax = 100; % Maximum number of terms.
% Domain:
if ( isa(F, 'chebfun') )
dom = F.domain([1, end]);
else
dom = [-1, 1];
end
cleanup_flag = 1; % Cleanup on.
mmax_flag = 0;
% Check if parameters have been provided:
while ( ~isempty(varargin) )
if ( strncmpi(varargin{1}, 'tol', 3) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
tol = varargin{2};
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'mmax', 4) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
mmax = varargin{2};
mmax_flag = 1;
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'dom', 3) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 2]) )
dom = varargin{2};
end
varargin([1, 2]) = [];
if ( isa(F, 'chebfun') )
if ( ~isequal(dom, F.domain([1, end])) )
warning('CHEBFUN:aaa:dom', ...
['Given domain does not match the domain of the chebfun.\n', ...
'Results may be inaccurate.'])
end
end
elseif ( strncmpi(varargin{1}, 'cleanup', 7) )
if ( strncmpi(varargin{2}, 'off', 3) || ( varargin{2} == 0 ) )
cleanup_flag = 0;
end
varargin([1, 2]) = [];
else
error('CHEBFUN:aaa:UnknownArg', 'Argument unknown.')
end
end
% Deal with Z and F:
if ( ~exist('Z', 'var') && isfloat(F) )
% F is given as data values, pick same number of sample points:
Z = linspace(dom(1), dom(2), length(F)).';
end
if ( exist('Z', 'var') )
% Z is given:
needZ = 0;
% Work with column vector:
Z = Z(:);
M = length(Z);
% Function values:
if ( isa(F, 'function_handle') || isa(F, 'chebfun') )
% Sample F on Z:
F = F(Z);
elseif ( isnumeric(F) )
% Work with column vector and check that it has correct length.
F = F(:);
if ( length(F) ~= M )
error('CHEBFUN:aaa:lengthFZ', ...
'Inputs F and Z must have the same length.')
end
elseif ( ischar(F) )
% F is given as a string input. Convert it to a function handle.
F = str2op(vectorize(F));
F = F(Z);
else
error('CHEBFUN:aaa:UnknownF', 'Input for F not recognized.')
end
else
% Z was not given. Set flag that Z needs to be determined.
% Also set Z and M since they are needed as output.
needZ = 1;
Z = [];
M = length(Z);
end
end % End of PARSEINPUT().
%% Evaluate rational function in barycentric form.
function r = reval(zz, zj, fj, wj)
% Evaluate rational function in barycentric form.
zv = zz(:); % vectorize zz if necessary
CC = 1./bsxfun(@minus, zv, zj.'); % Cauchy matrix
r = (CC*(wj.*fj))./(CC*wj); % vector of values
% Deal with input inf: r(inf) = lim r(zz) = sum(w.*f) / sum(w):
r(isinf(zv)) = sum(wj.*fj)./sum(wj);
% Deal with NaN:
ii = find(isnan(r));
for jj = 1:length(ii)
if ( isnan(zv(ii(jj))) || ~any(zv(ii(jj)) == zj) )
% r(NaN) = NaN is fine.
% The second case may happen if r(zv(ii)) = 0/0 at some point.
else
% Clean up values NaN = inf/inf at support points.
% Find the corresponding node and set entry to correct value:
r(ii(jj)) = fj(zv(ii(jj)) == zj);
end
end
% Reshape to input format:
r = reshape(r, size(zz));
end % End of REVAL().
%% Compute poles, residues and zeros.
function [pol, res, zer] = prz(r, zj, fj, wj)
% Compute poles, residues, and zeros of rational function in barycentric form.
m = length(wj);
% Compute poles via generalized eigenvalue problem:
B = eye(m+1);
B(1,1) = 0;
E = [0 wj.'; ones(m, 1) diag(zj)];
pol = eig(E, B);
% Remove zeros of denominator at infinity:
pol = pol(~isinf(pol));
% Compute residues via discretized Cauchy integral:
dz = 1e-5*exp(2i*pi*(1:4)/4);
res = r(bsxfun(@plus, pol, dz))*dz.'/4;
% Compute zeros via generalized eigenvalue problem:
E = [0 (wj.*fj).'; ones(m, 1) diag(zj)];
zer = eig(E, B);
% Remove zeros of numerator at infinity:
zer = zer(~isinf(zer));
end % End of PRZ().
%% Cleanup
function [r, pol, res, zer, z, f, w] = cleanup(r, pol, res, zer, z, f, w, Z, F)
% Remove spurious pole-zero pairs.
% Find negligible residues:
ii = find(abs(res) < 1e-13 * norm(F, inf));
ni = length(ii);
if ( ni == 0 )
% Nothing to do.
return
elseif ( ni == 1 )
fprintf('1 Froissart doublet.\n')
else
fprintf('%d Froissart doublets.\n', ni)
end
% For each spurious pole find and remove closest support point:
for j = 1:ni
azp = abs(z-pol(ii(j)));
jj = find(azp == min(azp),1);
% Remove support point(s):
z(jj) = [];
f(jj) = [];
end
% Remove support points z from sample set:
for jj = 1:length(z)
F(Z == z(jj)) = [];
Z(Z == z(jj)) = [];
end
m = length(z);
M = length(Z);
% Build Loewner matrix:
SF = spdiags(F, 0, M, M);
Sf = diag(f);
C = 1./bsxfun(@minus, Z, z.'); % Cauchy matrix.
A = SF*C - C*Sf; % Loewner matrix.
% Solve least-squares problem to obtain weights:
[~, ~, V] = svd(A, 0);
w = V(:,m);
% Build function handle and compute poles, residues and zeros:
r = @(zz) reval(zz, z, f, w);
[pol, res, zer] = prz(r, z, f, w);
end % End of CLEANUP().
%% Automated choice of sample set
function [r, pol, res, zer, zj, fj, wj, errvec] = ...
aaa_autoZ(F, dom, tol, mmax, cleanup_flag, mmax_flag)
%
% Flag if function has been resolved:
isResolved = 0;
% Main loop:
for n = 5:14
% Sample points:
% Next line enables us to do pretty well near poles
Z = linspace(dom(1)+1.37e-8*diff(dom), dom(2)-3.08e-9*diff(dom), 1 + 2^n).';
[r, pol, res, zer, zj, fj, wj, errvec] = aaa(F, Z, 'tol', tol, ...
'mmax', mmax, 'cleanup', cleanup_flag);
% Test if rational approximant is accurate:
reltol = tol * norm(F(Z), inf);
% On Z(n):
err(1,1) = norm(F(Z) - r(Z), inf);
Zrefined = linspace(dom(1)+1.37e-8*diff(dom), dom(2)-3.08e-9*diff(dom), ...
round(1.5 * (1 + 2^(n+1)))).';
err(2,1) = norm(F(Zrefined) - r(Zrefined), inf);
if ( all(err < reltol) )
% Final check that the function is resolved, inspired by sampleTest().
% Pseudo random sample points in [-1, 1]:
xeval = [-0.357998918959666; 0.036785641195074];
% Scale to dom:
xeval = (dom(2) - dom(1))/2 * xeval + (dom(2) + dom(1))/2;
if ( norm(F(xeval) - r(xeval), inf) < reltol )
isResolved = 1;
break
end
end
end
if ( ( isResolved == 0 ) && ~mmax_flag )
warning('CHEBFUN:aaa:notResolved', ...
'Function not resolved using %d pts.', length(Z))
end
end % End of AAA_AUTOZ().
function op = str2op(op)
% Convert string inputs to either numeric format or function_handles.
sop = str2num(op);
if ( ~isempty(sop) )
op = sop;
else
depVar = symvar(op);
if ( numel(depVar) ~= 1 )
error('CHEBFUN:CHEBFUN:str2op:indepvars', ...
'Incorrect number of independent variables in string input.');
end
op = eval(['@(' depVar{:} ')', op]);
end
end % End of STR2OP().