-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathme.py
executable file
·156 lines (121 loc) · 5.62 KB
/
me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Natural Language Toolkit: Interface to scikit-learn classifiers
#
# Author: Lars Buitinck <L.J.Buitinck@uva.nl>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""
scikit-learn (http://scikit-learn.org) is a machine learning library for
Python. It supports many classification algorithms, including SVMs,
Naive Bayes, logistic regression (MaxEnt) and decision trees.
This package implement a wrapper around scikit-learn classifiers. To use this
wrapper, construct a scikit-learn estimator object, then use that to construct
a SklearnClassifier. E.g., to wrap a linear SVM with default settings:
>>> from sklearn.svm import LinearSVC
>>> from nltk.classify.scikitlearn import SklearnClassifier
>>> classif = SklearnClassifier(LinearSVC())
A scikit-learn classifier may include preprocessing steps when it's wrapped
in a Pipeline object. The following constructs and wraps a Naive Bayes text
classifier with tf-idf weighting and chi-square feature selection to get the
best 1000 features:
>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.pipeline import Pipeline
>>> pipeline = Pipeline([('tfidf', TfidfTransformer()),
... ('chi2', SelectKBest(chi2, k=1000)),
... ('nb', MultinomialNB())])
>>> classif = SklearnClassifier(pipeline)
"""
from __future__ import print_function, unicode_literals
from nltk.classify.api import ClassifierI
from nltk.probability import DictionaryProbDist
from nltk import compat
try:
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import LabelEncoder
except ImportError:
pass
__all__ = ['SklearnClassifier']
@compat.python_2_unicode_compatible
class SklearnClassifier(ClassifierI):
"""Wrapper for scikit-learn classifiers."""
def __init__(self, estimator, dtype=float, sparse=True):
"""
:param estimator: scikit-learn classifier object.
:param dtype: data type used when building feature array.
scikit-learn estimators work exclusively on numeric data. The
default value should be fine for almost all situations.
:param sparse: Whether to use sparse matrices internally.
The estimator must support these; not all scikit-learn classifiers
do (see their respective documentation and look for "sparse
matrix"). The default value is True, since most NLP problems
involve sparse feature sets. Setting this to False may take a
great amount of memory.
:type sparse: boolean.
"""
self._clf = estimator
self._encoder = LabelEncoder()
self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse)
def __repr__(self):
return "<SklearnClassifier(%r)>" % self._clf
def classify_many(self, featuresets):
"""Classify a batch of samples.
:param featuresets: An iterable over featuresets, each a dict mapping
strings to either numbers, booleans or strings.
:return: The predicted class label for each input sample.
:rtype: list
"""
X = self._vectorizer.transform(featuresets)
classes = self._encoder.classes_
return [classes[i] for i in self._clf.predict(X)]
def prob_classify_many(self, featuresets):
"""Compute per-class probabilities for a batch of samples.
:param featuresets: An iterable over featuresets, each a dict mapping
strings to either numbers, booleans or strings.
:rtype: list of ``ProbDistI``
"""
X = self._vectorizer.transform(featuresets)
y_proba_list = self._clf.predict_proba(X)
return [self._make_probdist(y_proba) for y_proba in y_proba_list]
def labels(self):
"""The class labels used by this classifier.
:rtype: list
"""
return list(self._encoder.classes_)
def train(self, labeled_featuresets):
"""
Train (fit) the scikit-learn estimator.
:param labeled_featuresets: A list of ``(featureset, label)``
where each ``featureset`` is a dict mapping strings to either
numbers, booleans or strings.
"""
X, y = list(compat.izip(*labeled_featuresets))
X = self._vectorizer.fit_transform(X)
y = self._encoder.fit_transform(y)
self._clf.fit(X, y)
return self
def _make_probdist(self, y_proba):
classes = self._encoder.classes_
return DictionaryProbDist(dict((classes[i], p)
for i, p in enumerate(y_proba)))
# skip doctests if scikit-learn is not installed
def setup_module(module):
from nose import SkipTest
try:
import sklearn
except ImportError:
raise SkipTest("scikit-learn is not installed")
if __name__ == "__main__":
from nltk.classify.util import names_demo, names_demo_features
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
# Bernoulli Naive Bayes is designed for binary classification. We set the
# binarize option to False since we know we're passing boolean features.
print("scikit-learn Naive Bayes:")
names_demo(SklearnClassifier(BernoulliNB(binarize=False)).train,
features=names_demo_features)
# The C parameter on logistic regression (MaxEnt) controls regularization.
# The higher it's set, the less regularized the classifier is.
print("\n\nscikit-learn logistic regression:")
names_demo(SklearnClassifier(LogisticRegression(C=1000)).train,
features=names_demo_features)