-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer.py
429 lines (319 loc) · 18.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2019 Anurag Roy <anu15roy@gmail.com>
#
# Distributed under terms of the MIT license.
"""
file containing code to train the GAN model
"""
import tensorflow as tf
import numpy as np
import scipy.misc
import os
import sys
from six.moves import range
import cPickle as pkl
import random
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
class CondGANTrainer(object):
def __init__(self, args, model,
dataset=None, exp_name="model2",
ckt_logs_dir="ckt_logs",
res_dir="res"):
self.model = model
self.dataset = dataset
print(self.dataset.embedding_shape)
self.exp_name = exp_name
self.log_dir = ckt_logs_dir
self.res_dir = res_dir
self.args = args
self.batch_size = self.args.batch_size
self.max_epoch = self.args.epochs
self.log_vars = []
######## Storing test image embeds ###########################
self.flat_image_embed_list = []
for class_label, embedding_list in self.dataset.train.image_dict.iteritems():
if class_label not in self.dataset.train.testids:
continue
for embed in embedding_list:
self.flat_image_embed_list.append((class_label, embed))
self.test_img_X = np.zeros((len(self.flat_image_embed_list), self.dataset.image_shape))
self.test_img_Y = np.zeros((len(self.flat_image_embed_list)), dtype=int)
for i, (label, embed) in enumerate(self.flat_image_embed_list):
self.test_img_X[i,:] = embed
self.test_img_Y[i]= label
######## Storing test text embeds #############################
flat_txt_embed_list = []
for class_label, embedding_list in self.dataset.train.embedding_dict.iteritems():
if class_label not in self.dataset.train.testids:
continue
for embed in embedding_list:
flat_txt_embed_list.append((class_label, embed))
self.embed_X = np.zeros((len(flat_txt_embed_list), self.dataset.embedding_shape))
self.label_Y = np.zeros((len(flat_txt_embed_list)), dtype=int)
for i, (label, embed) in enumerate(flat_txt_embed_list):
self.embed_X[i,:] = embed
self.label_Y[i] = label
def build_placeholder(self):
self.real_images = tf.placeholder(tf.float32, [None,\
self.dataset.image_shape],
name='real_images')
self.wrong_images = tf.placeholder(tf.float32, [None,\
self.dataset.image_shape],
name='wrong_images')
self.embeddings = tf.placeholder(tf.float32, [None,\
self.dataset.embedding_shape],
name='input_embeddings')
self.wrong_embeddings = tf.placeholder(tf.float32, [None,\
self.dataset.embedding_shape],
name='wrong_embeddings')
self.labels = tf.placeholder(tf.int32, [None])
self.generator_lr = tf.placeholder(tf.float32, [],
name='generator_learning_rate')
self.discriminator_lr = tf.placeholder(tf.float32, [],
name='discriminator_learning_rate')
self.CSEM_lr = tf.placeholder(tf.float32, [],
name='CSEM_learning_rate')
self.z = tf.placeholder(tf.float32, [None, self.args.z_dim], name='noise_z')
self.z_1 = tf.placeholder(tf.float32, [None, self.args.z_dim], name='noise_z_1')
self.acc = tf.placeholder(tf.float32, [], name="Accuracy")
def init_op(self):
self.build_placeholder()
self.c1, kl_loss = self.model.generate_condition_and_KL_loss(self.embeddings)
wrong_c1, wrong_kl_loss = self.model.generate_condition_and_KL_loss(self.wrong_embeddings, reuse=True)
c2, _ = self.model.generate_condition_and_KL_loss(self.embeddings, reuse=True, isTrainable=False)
self.log_vars.append(("hist_z", self.z))
fake_imgs = self.model.generator(tf.concat([self.c1, self.z], 1))
wrong_fake_imgs = self.model.generator(tf.concat([wrong_c1, self.z_1], 1), reuse=True, isTrainable=True)
discriminator_loss, generator_loss, \
csem_loss = self.compute_losses(fake_imgs, wrong_fake_imgs)
generator_loss += (self.args.kl_div_coefficient * (kl_loss + wrong_kl_loss) / 2.0)
self.log_vars.append(("g_loss_kl_loss", kl_loss))
self.log_vars.append(("g_loss", generator_loss))
self.log_vars.append(("d_loss", discriminator_loss))
self.d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='d_net')
self.g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='g_net')
self.CSEM_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='CSEM_net')
self.prepare_trainer(generator_loss, discriminator_loss, csem_loss)
self.define_summaries()
self.fake_imgs = self.model.generator(tf.concat([c2, self.z], 1), reuse=True, isTrainable=False)
######################### for testing ###############################
self.gen_embeds = self.model.embed_Image(self.fake_imgs, reuse=True, isTrainable=False)
self.resize_imgs = self.model.embed_Image(self.real_images, reuse=True, isTrainable=False)
######################################################################
def compute_losses(self, fake_images, wrong_fake_images):
realConstructionLoss = tf.reduce_mean(tf.reduce_sum(tf.abs(fake_images - self.real_images), axis=1))
wrongConstructionLoss = tf.reduce_mean(tf.reduce_sum(tf.abs(fake_images - self.wrong_images), axis=1))
maxMarginRegularizer = realConstructionLoss - wrongConstructionLoss + 2.0
real_logit = self.model.get_discriminator(self.real_images, self.embeddings)
fake_logit = self.model.get_discriminator(fake_images, self.embeddings, reuse=True)
wrong_logit = self.model.get_discriminator(self.wrong_images, self.embeddings, reuse=True)
discriminator_loss = (tf.reduce_mean(fake_logit) + tf.reduce_mean(wrong_logit))/2. - tf.reduce_mean(real_logit)
normalize_a = tf.nn.l2_normalize(self.model.embed_Image(fake_images),1)
normalize_b = tf.nn.l2_normalize(self.c1,1)
normalize_c = tf.nn.l2_normalize(self.model.embed_Image(wrong_fake_images, reuse=True), 1)
realcosineSimilarity = tf.reduce_mean(tf.reduce_sum(tf.multiply(normalize_a,normalize_b), axis=1))
wrongcosineSimilarity = tf.reduce_mean(tf.reduce_sum(tf.multiply(normalize_c,normalize_b), axis=1))
csem_loss = tf.math.log(1.0 + tf.math.exp(wrongcosineSimilarity - realcosineSimilarity))
generator_loss = -tf.reduce_mean(fake_logit) + csem_loss
generator_loss += self.args.mm_reg_coeff * maxMarginRegularizer
return discriminator_loss, generator_loss, csem_loss
def prepare_trainer(self, generator_loss, discriminator_loss, csem_loss):
generator_opt = tf.train.RMSPropOptimizer(self.generator_lr)
generator_grad_vars = generator_opt.compute_gradients(generator_loss,
var_list=self.g_vars)
self.generator_trainer = generator_opt.apply_gradients(generator_grad_vars)
CSEM_opt = tf.train.AdamOptimizer(self.CSEM_lr, beta1=0.5)
CSEM_grad_vars = CSEM_opt.compute_gradients(csem_loss,
var_list=self.CSEM_vars)
self.CSEM_trainer = CSEM_opt.apply_gradients(CSEM_grad_vars)
self.discriminator_opt = tf.train.RMSPropOptimizer(self.discriminator_lr).minimize(discriminator_loss,
var_list=self.d_vars)
self.discriminator_clipper = [var.assign(tf.clip_by_value(var, -self.args.clip_val, self.args.clip_val))
for var in self.d_vars]
def define_summaries(self):
all_sum = {'g':[], 'd': [], 'hist':[]}
for k, v in self.log_vars:
if k.startswith('g'):
all_sum['g'].append(tf.summary.scalar(k, v))
elif k.startswith('d'):
all_sum['d'].append(tf.summary.scalar(k, v))
else:
all_sum['hist'].append(tf.summary.histogram(k, v))
self.g_sum = tf.summary.merge(all_sum['g'])
self.d_sum = tf.summary.merge(all_sum['d'])
self.acc_sum = tf.summary.scalar("Accuracy_sum", self.acc)
self.hist_sum = tf.summary.merge(all_sum['hist'])
def build_model(self, sess, model_path=''):
self.init_op()
run_opts = tf.RunOptions(report_tensor_allocations_upon_oom = True)
sess.run(tf.global_variables_initializer(), options=run_opts)
if len(model_path) > 0:
print "Reading model parameters from {}".format(model_path)
restore_vars = tf.global_variables()
saver = tf.train.Saver(restore_vars)
saver.restore(sess, model_path)
istart = model_path.rfind('_') + 1
iend = model_path.rfind('.')
counter = int(model_path[istart:iend])
else:
print "Created model with fresh parameters."
counter = 0
return counter
def train(self):
self.accuracy = 0.0
snapshot_path = ''
generator_lr = self.args.generator_lr
CSEM_lr = self.args.CSEM_lr
discriminator_lr = self.args.discriminator_lr
number_example = 531000
epoch = 0
keys = ['d_loss', 'g_loss']
log_vars = []
log_keys = []
for k, v in self.log_vars:
if k in keys:
log_vars.append(v)
log_keys.append(k)
updates_per_epoch = int(number_example / self.batch_size)
# creating session
acc_list = []
acc_counter = 0
gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
counter = self.build_model(sess, snapshot_path)
self.params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='g_net')
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(self.log_dir, sess.graph)
for j in range(1, 10000):
epoch += 1
all_log_vals = []
################## E-Step #########################
for i in range(updates_per_epoch):
for _ in range(100):
#### discriminator training step ##########
for disc_iter in range(5):
images, wrong_embeds, wrong_images, embeddings,labels =\
self.dataset.train.next_batch(self.batch_size)
z_rand = np.random.normal(0, 1., [self.batch_size, self.args.z_dim]).astype(np.float32)
z_rand_1 = np.random.normal(0,1., [self.batch_size, self.args.z_dim]).astype(np.float32)
feed_dict = {self.real_images: images,
self.wrong_images: wrong_images,
self.embeddings: embeddings,
self.wrong_embeddings: wrong_embeds,
self.z: z_rand,
self.z_1: z_rand_1,
self.labels: labels,
self.discriminator_lr: discriminator_lr
}
feed_out = [self.discriminator_opt,
self.d_sum,
self.hist_sum,
log_vars]
_, d_sum, hist_sum, log_vals = sess.run(feed_out,
feed_dict)
sess.run(self.discriminator_clipper)
summary_writer.add_summary(d_sum, counter)
summary_writer.add_summary(hist_sum, counter)
all_log_vals.append(log_vals)
############ generator training step#######################
images, wrong_embeds, wrong_images, embeddings,labels =\
self.dataset.train.next_batch(self.batch_size)
z_rand = np.random.normal(0, 1., [self.batch_size, self.args.z_dim]).astype(np.float32)
z_rand_1 = np.random.normal(0, 1., [self.batch_size, self.args.z_dim]).astype(np.float32)
feed_dict = {self.real_images: images,
self.wrong_images: wrong_images,
self.embeddings: embeddings,
self.wrong_embeddings: wrong_embeds,
self.z: z_rand,
self.z_1: z_rand_1,
self.labels: labels,
self.generator_lr: generator_lr,
}
feed_out = [self.generator_trainer,
self.g_sum]
_, g_sum = sess.run(feed_out,
feed_dict)
summary_writer.add_summary(g_sum, counter)
#################### M-Step ######################################
for _ in range(100):
images, wrong_embeds, wrong_images, embeddings,labels =\
self.dataset.train.next_batch(self.batch_size)
z_rand = np.random.normal(0, 1., [self.batch_size, self.args.z_dim]).astype(np.float32)
z_rand_1 = np.random.normal(0, 1., [self.batch_size, self.args.z_dim]).astype(np.float32)
feed_dict = {self.real_images: images,
self.wrong_images: wrong_images,
self.embeddings: embeddings,
self.wrong_embeddings: wrong_embeds,
self.z: z_rand,
self.z_1: z_rand_1,
self.labels: labels,
self.CSEM_lr: CSEM_lr
}
feed_out = self.CSEM_trainer
_ = sess.run(feed_out,
feed_dict)
counter += 1
#################### Evaluation Part###########
acc_counter += 1
new_accuracy = self.evaluate_model(sess)
acc_list.append(new_accuracy)
acc_summary = sess.run(self.acc_sum, {self.acc: new_accuracy})
summary_writer.add_summary(acc_summary, acc_counter)
if new_accuracy > self.accuracy:
print "New best Prec@50 = {}".format(new_accuracy)
self.accuracy = new_accuracy
snapshot_path = "%s/acc_%s_%s_%s.ckpt" %(self.log_dir,
new_accuracy,
self.exp_name,
str(counter))
avg_log_vals = np.mean(np.array(all_log_vals), axis=0)
dic_logs = {}
for k, v in zip(log_keys, avg_log_vals):
dic_logs[k] = v
log_line = ";".join("%s: %s" %(str(k), str(dic_logs[k]))
for k in dic_logs)
print "Epoch {} | {}".format(epoch, log_line)
def evaluate_model(self, sess):
z_rand = np.random.normal(0, 1., [self.embed_X.shape[0], self.args.z_dim]).astype(np.float32)
new_embeddings, new_test_img_X= sess.run([self.gen_embeds, self.resize_imgs], feed_dict={self.embeddings:self.embed_X,
self.real_images: self.test_img_X,
self.z: z_rand})
cosine_sim = cosine_similarity(new_embeddings, new_test_img_X)
success_dict = {}
retrieved_dict = {}
for idx in range(new_embeddings.shape[0]):
idx = self.label_Y[idx]
success_dict [idx] = 0
retrieved_dict[idx] = 0
ret_list = []
for i in range(new_embeddings.shape[0]):
txt_class_label = self.label_Y[i]
sim_list = []
for j in range(self.test_img_X.shape[0]):
sim = cosine_sim[i,j]
im_class_label = self.test_img_Y[j]
sim_list.append((im_class_label, sim))
sim_list = sorted(sim_list, key= lambda x: x[1], reverse=True)
im_list = []
retrieve_count = 50
for im_label, _ in sim_list[:retrieve_count]:
im_list.append(im_label)
retrieved_dict[txt_class_label] += 1
if txt_class_label == im_label:
success_dict[txt_class_label] += 1
ret_list.append({txt_class_label: im_list})
avg_p = 0.0
for idx in retrieved_dict.keys():
avg_p = avg_p + (success_dict[idx] / float(retrieved_dict[idx]))
avg_p = avg_p / len(retrieved_dict)
if self.accuracy < avg_p:
out_file = open("{0}/acc{1}.pkl".format(self.res_dir, avg_p), "wb")
pkl.dump(ret_list, out_file)
out_file.close()
return avg_p