Sparse Spatial Scene Embedding powered SLAM system.
Here is the dependencies
for g2o:
sudo apt install libsuitesparse-dev\
qtdeclarative5-dev\
qt5-qmake\
libqglviewer-dev\
cmake\
libeigen3-dev
for pangolin:
sudo apt install libgl1-mesa-dev\
libglew-dev\
ffmpeg libavcodec-dev libavutil-dev libavformat-dev libswscale-dev\
pip install pyopengl
conda install -c dglteam dgl-cuda10.2
Build the g2o
and pangolin
from source
- g2o
cd third_party
cd g2opy
mkdir build
cd build
cmake .. -DPYTHON_EXECUTABLE=$(which python)
make -j12
- pangolin
cd third_party
cd pangolin
mkdir build
cd build
cmake .. -DPYTHON_EXECUTABLE=$(which python)
make -j8
cd ..
python setup.py install
Please follow the following steps to build the dataset
- run the Vins-RGBD to generate the pose graph and point cloud map data
- run the dataset preprocess script to cook the dataset (crop the patch, calculate ground truth iou)
The project is based on multiple open-source projects including: