Skip to content

randalhsu/OPAL

Repository files navigation

OPAL: Price Action Learning aids

Traders can practice and refine their price action skills with this Django web app.

Deployed site: Desktop layout / mobile layout

Features

  • Historical data bar-by-bar replaying and fast forwarding
    • Implemented with WebSocket and auto prefetch mechanism for smoother experience
    • Utilize zlib compression for lower bandwidth usage
  • Dual time frame charts (H1 and M5) with synced status
  • Draw Daily open price (as an important potential support/resistance)
  • Select between different tickers
  • Jump to a specified time
  • Alerts
  • Buy/Sell orders
  • Positions calculation
  • Customizable chart options (timezone, colors, etc.)

Hotkeys

  • Space/: Step one bar
  • F: Fast forward 24 bars, or until triggers an alert/order
  • Z/: Stepback one bar
  • Hover over the charts:
    • A: Alert
    • B: Buy order
    • S: Sell order
    • D: Toggle price panel
    • G: Go to hovered time
  • Scales:
    • Q: Fit to left chart
    • W/E: Fit to right chart
    • R: Reset all scales

How to deploy locally

  1. (Optional) Put your historical data into static/PriceData folder
  2. Install Python (tested with v3.11.4) and dependencies: pip install -r requirements.txt
  3. python manage.py migrate
  4. python manage.py runserver
  5. Browse http://127.0.0.1:8000/

How to deploy to render.com

  1. Create a Web Service with this repo
  2. Set Start Command as: daphne mysite.asgi:application --port $PORT --bind 0.0.0.0 -v2
  3. Add Environment Variables:
    • PYTHON_VERSION: 3.11.4
    • ALLOWED_HOSTS: (deployed service url, e.g. xxxx-xxxx.onrender.com)
    • SECRET_KEY: my_Pr3c10uSSSsss
    • DEBUG: 0
  4. Manual Deploy -> Clear build cache & deploy

Developer's Note

Backend main logic:

Frontend main logic: