-
Download data and unzip as it train, test, validation
-
Name the csv's train.csv, test.csv, validation.csv
-
Create directories train_resized, test_resized, validation_resized
- Inside each of these make the directories pos, neg
-
Complete folder structure:
out/ preview/ train_resized/ ├── neg/ └── pos/ test_resized/ ├── neg/ └── pos/ validation_resized/ ├── neg/ └── pos/ train/ test/ validation/
-
call
python scale.py
-
call
python split_data.py
-
call
python train_network.py noLoad
if you don't want to load weights, other wise callpython train_network.py path/to/weights.h5
-
call
python keras_to_tensorflow.py nameOfYourTrainedH5.h5
Note: Do not include the out/ just write the name of the file in the out folder -
call
python path/to/strip_unused.py --input_graph=out/tensorflow.pb --output_graph=out/tensorflow-optimized.pb --input_node_names=input_1 --output_node_names=predictions/Softmax --input_binary=true
-
Notifications
You must be signed in to change notification settings - Fork 1
raphaelfacredyn/Melanoma-ML
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published