Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 1.08 KB

README.md

File metadata and controls

34 lines (26 loc) · 1.08 KB

Procedure

  • Download data and unzip as it train, test, validation

  • Name the csv's train.csv, test.csv, validation.csv

  • Create directories train_resized, test_resized, validation_resized

    • Inside each of these make the directories pos, neg
  • Complete folder structure:

    out/
    
    preview/
    
    train_resized/
    ├── neg/
    └── pos/
    
    test_resized/
    ├── neg/
    └── pos/
    
    validation_resized/
    ├── neg/
    └── pos/
    
    train/
    
    test/
    
    validation/
    
  • call python scale.py

  • call python split_data.py

  • call python train_network.py noLoad if you don't want to load weights, other wise call python train_network.py path/to/weights.h5

  • call python keras_to_tensorflow.py nameOfYourTrainedH5.h5 Note: Do not include the out/ just write the name of the file in the out folder

  • call python path/to/strip_unused.py --input_graph=out/tensorflow.pb --output_graph=out/tensorflow-optimized.pb --input_node_names=input_1 --output_node_names=predictions/Softmax --input_binary=true