-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.py
113 lines (87 loc) · 4.07 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import mediapipe as mp
import cv2
import numpy as np
import uuid
import os
from pynput.keyboard import Key, Controller
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
joint_list =[[8,5,0]]
def draw_finger_angles(image, results, joint_list):
# Loop through hands
for hand in results.multi_hand_landmarks:
# Loop through joint sets
for joint in joint_list:
a = np.array([hand.landmark[joint[0]].x, hand.landmark[joint[0]].y]) # First coord
b = np.array([hand.landmark[joint[1]].x, hand.landmark[joint[1]].y]) # Second coord
c = np.array([hand.landmark[joint[2]].x, hand.landmark[joint[2]].y]) # Third coord
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
cv2.putText(image, str(round(angle, 2)), tuple(np.multiply(b, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
return image, angle
def get_label(index, hand, results):
output = None
for idx, classification in enumerate(results.multi_handedness):
if classification.classification[0].index == index:
# Process results
label = classification.classification[0].label
score = classification.classification[0].score
text = '{} {}'.format(label, round(score, 2))
# Extract Coordinates
coords = tuple(np.multiply(
np.array((hand.landmark[mp_hands.HandLandmark.WRIST].x, hand.landmark[mp_hands.HandLandmark.WRIST].y)),
[640, 480]).astype(int))
output = text, coords
return output
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.8, min_tracking_confidence=0.5) as hands:
while cap.isOpened():
ret, frame = cap.read()
# BGR 2 RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Flip on horizontal
image = cv2.flip(image, 1)
# Set flag
image.flags.writeable = False
# Detections
results = hands.process(image)
# Set flag to true
image.flags.writeable = True
# RGB 2 BGR
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Detections
print(results)
# Rendering results
if results.multi_hand_landmarks:
for num, hand in enumerate(results.multi_hand_landmarks):
mp_drawing.draw_landmarks(image, hand, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(121, 22, 76), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(250, 44, 250), thickness=2, circle_radius=2),
)
# Render left or right detection
if get_label(num, hand, results):
text, coord = get_label(num, hand, results)
cv2.putText(image, text, coord, cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
# Draw angles to image from joint list
image, angle = draw_finger_angles(image, results, joint_list)
keyboard = Controller()
if angle<=180:
keyboard.press(Key.right)
keyboard.release(Key.right)
else:
keyboard.press(Key.left)
keyboard.release(Key.left)
# Save our image
# cv2.imwrite(os.path.join('Output Images', '{}.jpg'.format(uuid.uuid1())), image)
cv2.rectangle(image, (0, 0), (355, 73), (214, 44, 53))
cv2.putText(image, 'Direction', (15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(image, "Left" if angle >180 else "Right",
(10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2, cv2.LINE_AA)
cv2.imshow('Hand Tracking', image)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()