-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.py
79 lines (64 loc) · 2.11 KB
/
FFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from scipy.fft import fft, ifft
import warnings
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
# Works fine with MacOS w/o explicit backend. However, crashes when trying to manually resize the created plot window.
matplotlib.use('TkAgg')
warnings.filterwarnings("ignore")
plt.style.use('bmh')
# signal information
freq = 1 # in Hertz
cycle = 2 # number of cycles
# sampling information
Fs = int(freq*100) # sample rate
T = 1/Fs # sampling period
t = 1/freq*cycle # seconds of sampling
N = Fs*t # total points in signal
# time vector
t_vec = np.arange(N)*T
DC = 0
y0 = 1*np.sin(2*np.pi*freq*t_vec)
y1 = 1/3*np.sin(2*np.pi*3*freq*t_vec)
y2 = 1/5*np.sin(2*np.pi*5*freq*t_vec)
y3 = 1/7*np.sin(2*np.pi*7*freq*t_vec)
y4 = 1/9*np.sin(2*np.pi*9*freq*t_vec)
Y = DC+y0+y1+y2+y3+y4
# time domain
fig, ax = plt.subplots(2, 2, figsize=(14, 10))
fig.tight_layout(pad=4)
ax[0, 0].set_title('signals')
ax[0, 0].set_ylabel('Amplitude', fontsize=10)
ax[0, 0].set_xlabel('time [s]', fontsize=10)
ax[0, 0].plot(t_vec, y0)
ax[0, 0].plot(t_vec, y1)
ax[0, 0].plot(t_vec, y2)
ax[0, 0].plot(t_vec, y3)
ax[0, 0].plot(t_vec, y4)
ax[0, 1].set_title('resulting signal')
ax[0, 1].set_ylabel('amplitude', fontsize=10)
ax[0, 1].set_xlabel('time [s]', fontsize=10)
ax[0, 1].plot(t_vec, Y)
# Fast Fourier Transform (FFT)
Y_k = fft(Y) # scipy.fft
# single sided-sided spectrum only, normalize amplitude
Y_k_mag = Y_k[0:int(N/2)]/N
Y_k_mag[1:] = 2*Y_k_mag[1:] # keep DC amplitude, correct AC amplitude
Pxx = np.abs(Y_k_mag) # skip imaginary part
# frequency vector
f_vec = Fs*np.arange((N/2))/N
# frequency domain
#ax[1,0].set_xscale('symlog')
#ax[1, 0].set_yscale('log')
ax[1, 0].set_title('FFT')
ax[1, 0].set_ylabel('Amplitude', fontsize=10)
ax[1, 0].set_xlabel('frequncy [Hz]', fontsize=10)
ax[1,0].stem(f_vec,Pxx, 'r',markerfmt=" ", basefmt="-r")
#ax[1, 0].plot(f_vec, Pxx, 'r')
# time domain inverse FFT
Y_inv = ifft(Y_k)
ax[1, 1].set_title('iFFT')
ax[1, 1].set_ylabel('Amplitude', fontsize=10)
ax[1, 1].set_xlabel('time [s]', fontsize=10)
ax[1, 1].plot(t_vec, Y_inv, 'r')
plt.show()