-
Notifications
You must be signed in to change notification settings - Fork 0
/
datacollection.py
61 lines (49 loc) · 1.76 KB
/
datacollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import math
import time
cap = cv2.VideoCapture(0) #0 for device cam, 1 for web cam
detector = HandDetector(maxHands=1)
offset = 20
imgSize = 300
counter = 0
folder = "/home/raunak/Desktop/SignWave/Data/Yes"
while True:
success, img = cap.read()
if not success:
break
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
# Ensure the coordinates are within image bounds
y1 = max(0, y - offset)
y2 = min(img.shape[0], y + h + offset)
x1 = max(0, x - offset)
x2 = min(img.shape[1], x + w + offset)
imgCrop = img[y1:y2, x1:x2]
imgCropShape = imgCrop.shape
if imgCropShape[0] > 0 and imgCropShape[1] > 0: # Proceed only if the crop is valid
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
cv2.imshow('ImageCrop', imgCrop)
cv2.imshow('ImageWhite', imgWhite)
cv2.imshow('Image', img)
key = cv2.waitKey(1)
if key == ord("s"):
counter += 1
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg', imgWhite)
print(counter)