forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshuffled_shift_cipher.py
184 lines (146 loc) · 6.58 KB
/
shuffled_shift_cipher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import annotations
import random
import string
class ShuffledShiftCipher:
"""
This algorithm uses the Caesar Cipher algorithm but removes the option to
use brute force to decrypt the message.
The passcode is a random password from the selection buffer of
1. uppercase letters of the English alphabet
2. lowercase letters of the English alphabet
3. digits from 0 to 9
Using unique characters from the passcode, the normal list of characters,
that can be allowed in the plaintext, is pivoted and shuffled. Refer to docstring
of __make_key_list() to learn more about the shuffling.
Then, using the passcode, a number is calculated which is used to encrypt the
plaintext message with the normal shift cipher method, only in this case, the
reference, to look back at while decrypting, is shuffled.
Each cipher object can possess an optional argument as passcode, without which a
new passcode is generated for that object automatically.
cip1 = ShuffledShiftCipher('d4usr9TWxw9wMD')
cip2 = ShuffledShiftCipher()
"""
def __init__(self, passcode: str | None = None) -> None:
"""
Initializes a cipher object with a passcode as it's entity
Note: No new passcode is generated if user provides a passcode
while creating the object
"""
self.__passcode = passcode or self.__passcode_creator()
self.__key_list = self.__make_key_list()
self.__shift_key = self.__make_shift_key()
def __str__(self) -> str:
"""
:return: passcode of the cipher object
"""
return "".join(self.__passcode)
def __neg_pos(self, iterlist: list[int]) -> list[int]:
"""
Mutates the list by changing the sign of each alternate element
:param iterlist: takes a list iterable
:return: the mutated list
"""
for i in range(1, len(iterlist), 2):
iterlist[i] *= -1
return iterlist
def __passcode_creator(self) -> list[str]:
"""
Creates a random password from the selection buffer of
1. uppercase letters of the English alphabet
2. lowercase letters of the English alphabet
3. digits from 0 to 9
:rtype: list
:return: a password of a random length between 10 to 20
"""
choices = string.ascii_letters + string.digits
password = [random.choice(choices) for _ in range(random.randint(10, 20))]
return password
def __make_key_list(self) -> list[str]:
"""
Shuffles the ordered character choices by pivoting at breakpoints
Breakpoints are the set of characters in the passcode
eg:
if, ABCDEFGHIJKLMNOPQRSTUVWXYZ are the possible characters
and CAMERA is the passcode
then, breakpoints = [A,C,E,M,R] # sorted set of characters from passcode
shuffled parts: [A,CB,ED,MLKJIHGF,RQPON,ZYXWVUTS]
shuffled __key_list : ACBEDMLKJIHGFRQPONZYXWVUTS
Shuffling only 26 letters of the english alphabet can generate 26!
combinations for the shuffled list. In the program we consider, a set of
97 characters (including letters, digits, punctuation and whitespaces),
thereby creating a possibility of 97! combinations (which is a 152 digit number
in itself), thus diminishing the possibility of a brute force approach.
Moreover, shift keys even introduce a multiple of 26 for a brute force approach
for each of the already 97! combinations.
"""
# key_list_options contain nearly all printable except few elements from
# string.whitespace
key_list_options = (
string.ascii_letters + string.digits + string.punctuation + " \t\n"
)
keys_l = []
# creates points known as breakpoints to break the key_list_options at those
# points and pivot each substring
breakpoints = sorted(set(self.__passcode))
temp_list: list[str] = []
# algorithm for creating a new shuffled list, keys_l, out of key_list_options
for i in key_list_options:
temp_list.extend(i)
# checking breakpoints at which to pivot temporary sublist and add it into
# keys_l
if i in breakpoints or i == key_list_options[-1]:
keys_l.extend(temp_list[::-1])
temp_list.clear()
# returning a shuffled keys_l to prevent brute force guessing of shift key
return keys_l
def __make_shift_key(self) -> int:
"""
sum() of the mutated list of ascii values of all characters where the
mutated list is the one returned by __neg_pos()
"""
num = sum(self.__neg_pos([ord(x) for x in self.__passcode]))
return num if num > 0 else len(self.__passcode)
def decrypt(self, encoded_message: str) -> str:
"""
Performs shifting of the encoded_message w.r.t. the shuffled __key_list
to create the decoded_message
>>> ssc = ShuffledShiftCipher('4PYIXyqeQZr44')
>>> ssc.decrypt("d>**-1z6&'5z'5z:z+-='$'>=zp:>5:#z<'.&>#")
'Hello, this is a modified Caesar cipher'
"""
decoded_message = ""
# decoding shift like Caesar cipher algorithm implementing negative shift or
# reverse shift or left shift
for i in encoded_message:
position = self.__key_list.index(i)
decoded_message += self.__key_list[
(position - self.__shift_key) % -len(self.__key_list)
]
return decoded_message
def encrypt(self, plaintext: str) -> str:
"""
Performs shifting of the plaintext w.r.t. the shuffled __key_list
to create the encoded_message
>>> ssc = ShuffledShiftCipher('4PYIXyqeQZr44')
>>> ssc.encrypt('Hello, this is a modified Caesar cipher')
"d>**-1z6&'5z'5z:z+-='$'>=zp:>5:#z<'.&>#"
"""
encoded_message = ""
# encoding shift like Caesar cipher algorithm implementing positive shift or
# forward shift or right shift
for i in plaintext:
position = self.__key_list.index(i)
encoded_message += self.__key_list[
(position + self.__shift_key) % len(self.__key_list)
]
return encoded_message
def test_end_to_end(msg: str = "Hello, this is a modified Caesar cipher") -> str:
"""
>>> test_end_to_end()
'Hello, this is a modified Caesar cipher'
"""
cip1 = ShuffledShiftCipher()
return cip1.decrypt(cip1.encrypt(msg))
if __name__ == "__main__":
import doctest
doctest.testmod()