-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerson.detection
87 lines (87 loc) · 3.6 KB
/
Person.detection
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
int main(int argc, char** argv)
{ HOGDescriptor hog;
Hog.winSize = Size(64,128);
# Training size of the samples used #
# Define variables and define valid extensions #
static vector<string> positiveTrainingImages;
static vector<string> negativeTrainingImages;
static vector<string> validExtensions;
validExtensions.push_back("jpg");
validExtensions.push_back("png");
validExtensions.push_back("ppm");
#Read image files from directory defined earlier#
getFilesInDirectory(posSamplesDir, positiveTrainingImages, validExtensions);
getFilesInDirectory(negSamplesDir, negativeTrainingImages, validExtensions);
# Retrieve the descriptor vectors from the samples#
Unsigned long overallSamples = positiveTrainingImages.size() + negativeTrainingImages.size();
# Make sure there are actually samples to train#
if (overallSamples == 0) {
printf("No training sample files found, nothing to do!\n"); return EXIT_SUCCESS;
}
fstream File;
File.open(featuresFile.c_str(), ios::out);
if (File.good() && File.is_open()) {
# Iterate over sample images
for (unsigned long currentFile = 0; currentFile < overallSamples; ++currentFile) {
storeCursor();
vector<float> featureVector;
# Get positive or negative sample image file path#
const string currentImageFile = (currentFile < positiveTrainingImages.size() ? positiveTrainingImages.at(currentFile) : negativeTrainingImages.at(currentFile - positiveTrainingImages.size()));
# Output
if ( (currentFile+1) % 10 == 0 || (currentFile+1) == overallSamples ) {
percent = ((currentFile+1) * 100 / overallSamples);
# Calculate feature vector from current image file
calculateFeaturesFromInput(currentImageFile, featureVector, hog);
if (!featureVector.empty()) {
# Put positive or negative sample class to file,
* true=positive, false=negative,
* and convert positive class to +1 and negative class to -1 for SVMlight
*/#
File << ((currentFile < positiveTrainingImages.size()) ? "+1" : "-1");
// Save feature vector components
for (unsigned int feature = 0; feature < featureVector.size(); ++feature) {
File << " " << (feature + 1) << ":" << featureVector.at(feature);
}
File << endl;
}
}
printf("\n");
File.flush();
File.close();
} else {
printf("Error opening file '%s'!\n", featuresFile.c_str());
return EXIT_FAILURE;
}
# Read in and train the calculated feature vectors #
printf("Calling SVMlight\n");
SVMlight::getInstance()->read_problem(const_cast<char*> (featuresFile.c_str()));
SVMlight::getInstance()->train();
# Calling the SVMlight module for training #
printf("Training done, saving model file!\n");
SVMlight::getInstance()->saveModelToFile(svmModelFile);
printf("Generating representative single HOG feature vector using svmlight!\n");
vector<float> descriptorVector;
vector<unsigned int> descriptorVectorIndices;
SVMlight::getInstance()->getSingleDetectingVector(descriptorVector, descriptorVectorIndices);
# save the positive to file system #
saveDescriptorVectorToFile(descriptorVector,descriptorVectorIndices, descriptorVectorFile);
printf("Testing custom detection using camera\n");
hog.setSVMDetector(descriptorVector);
VideoCapture cap(0);
# open the default camera #
if(!cap.isOpened()) {
# check if code is working #
printf("Error opening camera!\n");
return EXIT_FAILURE;
}
Mat testImage;
while ((cvWaitKey(10) & 255) != 27) {
cap >> testImage;
# get a new frame from camera #
cvtColor(testImage, testImage, CV_BGR2GRAY);
# train on grey scale image #
detectTest(hog, testImage);
imshow("HOG custom detection", testImage);
}
return EXIT_SUCCESS;
}