-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
73 lines (40 loc) · 2.03 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(collapse = TRUE,
comment = "#>",
fig.path = "man/figures/",
out.width = "100%")
```
## :mortar_board: Practice 4 - Renv
<!-- badges: start -->
[![License: GPL-2](https://img.shields.io/badge/License-GPL%20v2-blue.svg)](https://choosealicense.com/licenses/gpl-2.0/)
<!-- badges: end -->
Structure of the research compendium of the [practice 4](https://rdatatoolbox.github.io/ex-targets.html) of the training course
[**Reproducible Research in Computational Ecology**](https://rdatatoolbox.github.io/).
### Content
This repository is structured as follow:
- [`data/`](https://github.com/rdatatoolbox/practice4/tree/main/data):
contains all raw data required to perform analyses
- [`R/`](https://github.com/rdatatoolbox/practice4/tree/main/R):
contains R functions developed especially for this project
- [`DESCRIPTION`](https://github.com/rdatatoolbox/practice4/tree/main/DESCRIPTION):
contains project metadata (author, date, dependencies, etc.)
- [`_targets.R`](https://github.com/rdatatoolbox/practice4/tree/main/_targets.R):
contains the pipeline
- [`index.Rmd`](https://github.com/rdatatoolbox/practice4/tree/main/index.Rmd):
contains the final report to knit
- [`make.R`](https://github.com/rdatatoolbox/practice4/tree/main/make.R):
main R script to run the entire project by running `targets::tar_make()`
### Usage
Fork and clone the repository, open R/RStudio and run:
```{r eval=FALSE}
source("make.R")
```
### Notes
- All required packages, listed in the `DESCRIPTION` file, will be installed (if necessary)
- All required packages and R functions will be loaded
### How to cite
> Casajus N, Bonnici I, Dray S, Gimenez O, Guéry L, Guilhaumon F, Schiettekatte NMD & Siberchicot A (2023) Workshop FRB-CESAB & RT EcoStat: Reproducible Research in Computational Ecology. Zenodo. <http://doi.org/10.5281/zenodo.4262978>.