forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abstractions3.py
62 lines (44 loc) · 1.68 KB
/
abstractions3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# abstractions2 goes from back to front, here we will go from front to back
from typing import List
from tqdm import tqdm
from tinygrad.helpers import DEBUG
# *****
# 0. Load mnist on the device
from tinygrad.nn.datasets import mnist
X_train, Y_train, _, _ = mnist()
X_train = X_train.float()
X_train -= X_train.mean()
# *****
# 1. Define an MNIST model.
from tinygrad import Tensor
l1 = Tensor.kaiming_uniform(128, 784)
l2 = Tensor.kaiming_uniform(10, 128)
def model(x): return x.flatten(1).dot(l1.T).relu().dot(l2.T)
l1n, l2n = l1.numpy(), l2.numpy()
# *****
# 2. Choose a batch for training and do the backward pass.
from tinygrad.nn.optim import SGD
optim = SGD([l1, l2])
X, Y = X_train[(samples:=Tensor.randint(128, high=X_train.shape[0]))], Y_train[samples]
optim.zero_grad()
model(X).sparse_categorical_crossentropy(Y).backward()
optim._step() # this will step the optimizer without running realize
# *****
# 3. Create a schedule.
# The weight Tensors have been assigned to, but not yet realized. Everything is still lazy at this point
# l1.lazydata and l2.lazydata define a computation graph
from tinygrad.engine.schedule import ScheduleItem
schedule: List[ScheduleItem] = Tensor.schedule(l1, l2)
print(f"The schedule contains {len(schedule)} items.")
for si in schedule: print(str(si)[:80])
# *****
# 4. Lower a schedule.
from tinygrad.engine.realize import lower_schedule_item, ExecItem
lowered: List[ExecItem] = [ExecItem(lower_schedule_item(si).prg, list(si.bufs)) for si in tqdm(schedule)]
# *****
# 5. Run the schedule
for ei in tqdm(lowered): ei.run()
# *****
# 6. Print the weight change
print("first weight change\n", l1.numpy()-l1n)
print("second weight change\n", l2.numpy()-l2n)