Skip to content

Commit

Permalink
Added a stiffened panel buckling model
Browse files Browse the repository at this point in the history
  • Loading branch information
regislebrun committed Apr 1, 2024
1 parent ff713c2 commit cd4a30b
Show file tree
Hide file tree
Showing 11 changed files with 515 additions and 0 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added python/doc/_static/stiffened_panel_simulation.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 2 additions & 0 deletions python/doc/bibliography.rst
Original file line number Diff line number Diff line change
Expand Up @@ -179,6 +179,8 @@ Bibliography
.. [knio2010] Le Maître, O., & Knio, O. M. (2010). *Spectral methods for uncertainty
quantification: with applications to computational fluid dynamics.* Springer
Science & Business Media.
.. [ko1994] William L. Ko, Raymond H. Jackson,
*Share Buckling Analysis of a Hat-Stiffend Panel*, NASA Technical Memorandum 4644 (November 1994).
.. [koay2006] Koay C.G., Basser P.J.,
*Analytically exact correction scheme for signal extraction from noisy magnitude MR signals*,
Journal of magnetics Resonance 179, 317-322, 2006.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
"""
Estimate a buckling probability
===============================
"""
# %%
#
# In this example, we estimate the probability that the output of a function
# exceeds a given threshold with the FORM method, the SORM method and an advanced
# sampling method.

# We consider the :ref:`stiffened panel model <use-case-stiffened-panel>`.

# %%
# Define the model
# ----------------

# %%
from openturns.usecases import stiffened_panel
import openturns as ot
import openturns.viewer as viewer

ot.Log.Show(ot.Log.NONE)

# %%
# We load the stiffened panel model from the usecases module :
panel = stiffened_panel.StiffenedPanel()
distribution = panel.distribution
model = panel.model

# %%
# See the input distribution
distribution

# %%
# See the model
model.getOutputDescription()

# %%
# Draw the distribution of a sample of the output.
sampleSize = 1000
inputSample = distribution.getSample(sampleSize)
outputSample = model(inputSample)
graph = ot.HistogramFactory().build(outputSample).drawPDF()
_ = viewer.View(graph)

# %%
# Define the event
# ----------------

# %%
# Then we create the event whose probability we want to estimate.

# %%
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
N0 = 165
event = ot.ThresholdEvent(G, ot.Less(), N0)
event.setName("buckling")

# %%
# Estimate the probability with FORM
# ----------------------------------

# %%
# Define a solver.

# %%
optimAlgo = ot.Cobyla()
optimAlgo.setMaximumEvaluationNumber(1000)
optimAlgo.setMaximumAbsoluteError(1.0e-10)
optimAlgo.setMaximumRelativeError(1.0e-10)
optimAlgo.setMaximumResidualError(1.0e-10)
optimAlgo.setMaximumConstraintError(1.0e-10)

# %%
# Run FORM.

# %%
startingPoint = distribution.getMean()
algo = ot.FORM(optimAlgo, event, startingPoint)
n0 = model.getCallsNumber()
algo.run()
n1 = model.getCallsNumber()
result = algo.getResult()
standardSpaceDesignPoint = result.getStandardSpaceDesignPoint()

# %%
# Retrieve results.

# %%
result = algo.getResult()
probability = result.getEventProbability()
print("Pf (FORM)=%.3e" % probability, "nb evals=", n1 - n0)

# %%
# Importance factors.

# %%
graph = result.drawImportanceFactors()
view = viewer.View(graph)

# %%
# Estimate the probability with SORM
# ----------------------------------

# %%
# Run SORM.

# %%
algo = ot.SORM(optimAlgo, event, startingPoint)
n0 = model.getCallsNumber()
algo.run()
n1 = model.getCallsNumber()

# %%
# Retrieve results.

# %%
result = algo.getResult()
probability = result.getEventProbabilityBreitung()
print("Pf (SORM)=%.3e" % probability, "nb evals=", n1 - n0)

# %%
# We see that the FORM and SORM approximations give significantly different
# results. Use a simulation algorithm to get a confidence interval.

# %%
algo = ot.PostAnalyticalControlledImportanceSampling(result)
algo.setBlockSize(100)
algo.setMaximumOuterSampling(100)
algo.setMaximumCoefficientOfVariation(0.1)
n0 = model.getCallsNumber()
algo.run()
n1 = model.getCallsNumber()
result = algo.getResult()
Pf = result.getProbabilityEstimate()
print("Pf (sim) = %.3e" % Pf, "nb evals=", n1 - n0)
width = result.getConfidenceLength(0.95)
print("C.I (95%)=[" + "%.3e" % (Pf - 0.5 * width), ",%.3e" % (Pf + 0.5 * width), "]")
207 changes: 207 additions & 0 deletions python/doc/usecases/use_case_stiffened_panel.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
.. _use-case-stiffened-panel:

Stiffened panel buckling
========================


Introduction
------------

The following figure presents a stiffed pannel subject to buckling on a military aircraft.

This use-case implements a simplified model of buckling for a stiffened panel, detailed in [ko1994]_.

.. figure:: ../_static/stiffened_panel_illustration.jpg
:align: center
:alt: buckling illustration
:width: 100%

**Figure 1.** Buckling of a stiffened panel.


.. figure:: ../_static/stiffened_panel_simulation.png
:align: center
:alt: buckling simulation
:width: 100%

**Figure 2.** 3D simulation of buckling.


.. figure:: ../_static/stiffened_panel_description.png
:align: center
:alt: stiffened panel geometry
:width: 100%

**Figure 3.** Parameterization of the stiffened panel.


This test case is composed of nine random variables:

- :math:`E\sim\mathcal{TN}(110.0e9, 55.0e9, 99.0e9, 121.0e9)` : Young modulus (Pa)

- :math:`nu\sim\mathcal{U}(0.3675, 0.3825)` : Poisson coefficient (-)

- :math:`h_c\sim\mathcal{U}(0.0285, 0.0315)` : Distance between the mean surface of the hat and the foot of the Stiffener (m)

- :math:`\ell\sim\mathcal{U}(0.04655, 0.05145)` : Length of the stiffener flank (m)

- :math:`f_1\sim\mathcal{U}(0.0266, 0.0294)` : Width of the stiffener foot (m)

- :math:`f_2\sim\mathcal{U}(0.00627, 0.00693)` : Width of the stiffener hat (m)

- :math:`t\sim\mathcal{U}(8.02e-5, 8.181e-5)` : Thickness of the panel and the stiffener (m)

- :math:`a\sim\mathcal{U}(0.6039, 0.6161)` : Width of the panel (m)

- :math:`b_0\sim\mathcal{U}(0.04455, 0.04545)` : Distance between two stiffeners (m)

- :math:`p\sim\mathcal{U}(0.03762, 0.03838)` : Half-width of the stiffener (m)

The output of interest is:

- :math:`(N_{xy})_{cr}`: the critical shear force (N)

We assume that the input variables are independent except the :math:`f_1` and
:math:`f_2` for which we measure a Spearman correlation of :math:`\rho^S_{12}=-0.8`,
modelled using a :class:`~openturns.NormalCopula`.

The critical load :math:`(\tau_{xy})_{cr}` of a stiffened panel subject to shear load is given by

.. math::
(\tau_{xy})_{cr}=k_{xy}\frac{\pi^2D}{b_0^2t_s}
where

- :math:`a` is the width of the panel;

- :math:`b_0` is the width between too consecutive stiffener feet;

- :math:`t_s` is the thickness of the panel main surface;

- :math:`E_s` is the Young modulus of the panel main surface;

- :math:`\nu_s` is the Poisson coefficient of the panel main surface;

- :math:`D=\frac{E_st_s^3}{12(1-\nu_s^2)}` is the bending coefficient of the
panel main surface;

- :math:`k_{xy}` is the load factor associated to shear buckling. It is given as
a function of :math:`\frac{b_0}{a}` through the empirical relation
:math:`k_{xy}=5.35 + 4\left(\frac{b_0}{a}\right)^2`

It is more convenient to use the shear force :math:`N_{xy}` instead of the shear
stress component :math:`\tau_{xy}`. It leads to the relation:

.. math::
N_{xy}=q_1+q_c
where :math:`q_1` abd :math:`q_c` are the shear fluxes in the panel main surface
and its stiffener. They are given by:

.. math::
q_1=\tau_{xy}t_s=2G_sh_0t_s\frac{\partial^2w}{\partial x\partial y}
and

.. math::
q_c=\frac{G_ct_cp}{\ell}\left[h-2h_0+\frac{h_c}{2p}(f_1-f_2)\right]\frac{\partial^2w}{\partial x\partial y}
where

- :math:`G_s=\frac{E_s}{2(1+\nu_s)}` is the shear modulus of the panel main
surface;

- :math:`\frac{\partial^2w}{\partial x\partial y}` is the torsion strain of the
panel main surface;

- :math:`G_c=\frac{E_c}{2(1+\nu_c)}` is the shear coefficient of the stiffener;

- :math:`t_c` is the thickness of the stiffener;

- :math:`h_c` is the distance between the mean surfaces of the stiffener hat and
foot;

- :math:`h=h_c+\frac{t_c+t_s}{2}` is the distance between the mean surfaces of
the stiffener hat and the panel main surface;

- :math:`f_1` is the width of the foot of the stiffener;

- :math:`f_2` is the width of the hat of the stiffener;

- :math:`p` is the half-widht of the stiffener;

- :math:`R` is the radius of the circular part of the stiffener;

- :math:`\theta` is the angle of the circular part of the stiffener;

- :math:`\ell` is the length of the stiffener flank;

- :math:`d=\frac{\ell-f_2}{2}-R\theta- :math:` is the half-lenght of the straight
part of the flank of the stiffener;

- :math:`A=\ell t_c` is the area of the section of an half-ondulation;

- :math:`\bar{A}=A+pt_s+\frac{1}{2}(f_1-f_2)t_c` is the area of the section of
the full panel (main surface and stiffener) bounded by :math:`p`;

- :math:`h_0=\frac{1}{2\bar{A}}\left[A(h_c+t_c+t_s)+\frac{1}{2}t_c(f_1-f_2)(t_c+t_s)\right]`
is the distance between the mean surface of the panel main surface and the
global geometric center of the pa,nel;

It leads to:

.. math::
N_{xy}=q_1(1+q_c/q1)=\tau_{xy}t_s\left[1+\frac{1}{4}\frac{G_ct_c}{G_st_s}\frac{\left(2p(h-2h_0)-h_c(f_1-f_2)\right)}{h_0\ell}\right]
and finally, :math:`(N_{xy})_{cr}` is given by:

.. math::
(N_{xy})_{cr}=\bigg[5.35 + 4\left(\frac{b_0}{a}\right)^2\bigg]\bigg[\frac{\pi^2}{b_0^2}\frac{E_st_s^3}{12(1-\nu_s^2)}\bigg]\bigg[1+\frac{1}{4}\frac{G_ct_c}{G_st_s}\frac{(2p(h-2h_0)-h_c(f_1-f_2))}{h_0\ell}\bigg]
For industrial constraints, the stiffener and the main surface are cut in the
same metal sheet, so :math:`E_c=E_s=E`, :math:`\nu_c=\nu_s=\nu`, :math:`t_c=t_s=t`.
The final expression of the critical shear force is then:

.. math::
(N_{xy})_{cr}=\bigg[5.35 + 4\left(\frac{b_0}{a}\right)^2\bigg]\bigg[\frac{\pi^2}{b_0^2}\frac{Et^3}{12(1-\nu^2)}\bigg]\bigg[1+\frac{1}{4}\frac{(2p(h-2h_0)-h_c(f_1-f_2))}{h_0\ell}\bigg]
with:

- :math:`A=\ell t`

- :math:`\bar{A}=A+t\left(p+\frac{f_1-f_2}{2}\right)`

- :math:`h_0=\frac{1}{2\bar{A}}\left[A(h_c+2t)+t^2(f_1-f_2)\right]`

- :math:`h=h_c+t`


References
----------

* [ko1994]_

Load the use case
-----------------

We can load this model from the use cases module as follows :

.. code-block:: python
>>> from openturns.usecases import stiffened_panel
>>> sp = stiffened_panel.StiffenedPanel()
>>> # Load the stiffened panel use case
>>> model = sp.model()
API documentation
-----------------

.. currentmodule:: openturns.usecases.stiffened_panel

.. autoclass:: StiffenedPanel
:noindex:

Examples based on this use case
-------------------------------

.. minigallery:: openturns.usecases.stiffened_panel.StiffenedPanel
1 change: 1 addition & 0 deletions python/doc/usecases/usecases.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,3 +27,4 @@ Contents
use_case_oscillator
coles
use_case_linthurst
use_case_stiffened_panel
1 change: 1 addition & 0 deletions python/doc/user_manual/usecases.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,4 @@ Use cases from the usecases module
usecases.fireSatellite_function.FireSatelliteModel
usecases.wingweight_function.WingWeightModel
usecases.oscillator.Oscillator
usecases.stiffened_panel.StiffenedPanel
Loading

0 comments on commit cd4a30b

Please sign in to comment.