forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel_utils_GPU.py
465 lines (380 loc) · 16.5 KB
/
model_utils_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import re
import numpy as np
import six
from os.path import join
from six.moves import zip
from absl import flags
import tensorflow as tf
def configure_tpu(FLAGS):
if FLAGS.use_tpu:
tpu_cluster = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
master = tpu_cluster.get_master()
else:
tpu_cluster = None
master = FLAGS.master
session_config = tf.ConfigProto(allow_soft_placement=True)
# Uncomment the following line if you hope to monitor GPU RAM growth
# session_config.gpu_options.allow_growth = True
if FLAGS.use_tpu:
strategy = None
tf.logging.info('Use TPU without distribute strategy.')
elif FLAGS.num_core_per_host == 1:
strategy = None
tf.logging.info('Single device mode.')
else:
strategy = tf.contrib.distribute.MirroredStrategy(
num_gpus=FLAGS.num_core_per_host)
tf.logging.info('Use MirroredStrategy with %d devices.',
strategy.num_replicas_in_sync)
per_host_input = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
master=master,
model_dir=FLAGS.model_dir,
session_config=session_config,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations,
num_shards=FLAGS.num_hosts * FLAGS.num_core_per_host,
per_host_input_for_training=per_host_input),
keep_checkpoint_max=FLAGS.max_save,
save_checkpoints_secs=None,
save_checkpoints_steps=FLAGS.save_steps,
train_distribute=strategy
)
return run_config
def init_from_checkpoint(FLAGS, global_vars=False):
tvars = tf.global_variables() if global_vars else tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if FLAGS.init_checkpoint is not None:
if FLAGS.init_checkpoint.endswith("latest"):
ckpt_dir = os.path.dirname(FLAGS.init_checkpoint)
init_checkpoint = tf.train.latest_checkpoint(ckpt_dir)
else:
init_checkpoint = FLAGS.init_checkpoint
tf.logging.info("Initialize from the ckpt {}".format(init_checkpoint))
(assignment_map, initialized_variable_names
) = get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if FLAGS.use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
# Log customized initialization
tf.logging.info("**** Global Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
return scaffold_fn
def get_train_op(FLAGS, total_loss, grads_and_vars=None):
global_step = tf.train.get_or_create_global_step()
# increase the learning rate linearly
if FLAGS.warmup_steps > 0:
warmup_lr = (tf.cast(global_step, tf.float32)
/ tf.cast(FLAGS.warmup_steps, tf.float32)
* FLAGS.learning_rate)
else:
warmup_lr = 0.0
# decay the learning rate
if FLAGS.decay_method == "poly":
decay_lr = tf.train.polynomial_decay(
FLAGS.learning_rate,
global_step=global_step - FLAGS.warmup_steps,
decay_steps=FLAGS.train_steps - FLAGS.warmup_steps,
end_learning_rate=FLAGS.learning_rate * FLAGS.min_lr_ratio)
elif FLAGS.decay_method == "cos":
decay_lr = tf.train.cosine_decay(
FLAGS.learning_rate,
global_step=global_step - FLAGS.warmup_steps,
decay_steps=FLAGS.train_steps - FLAGS.warmup_steps,
alpha=FLAGS.min_lr_ratio)
else:
raise ValueError(FLAGS.decay_method)
learning_rate = tf.where(global_step < FLAGS.warmup_steps,
warmup_lr, decay_lr)
if FLAGS.weight_decay == 0:
optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate,
epsilon=FLAGS.adam_epsilon)
elif FLAGS.weight_decay > 0 and FLAGS.num_core_per_host == 1:
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
epsilon=FLAGS.adam_epsilon,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
weight_decay_rate=FLAGS.weight_decay)
else:
raise ValueError("Do not support `weight_decay > 0` with multi-gpu "
"training so far.")
if FLAGS.use_tpu:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
variables = tf.trainable_variables()
variables = variables[-177:]
# print('===========tvars====================')
# print(t_vars)
for v in variables:
print('=======', v, '======')
use_fp16 = True
if use_fp16:
print('entrou no FP16')
loss_scale_manager = tf.contrib.mixed_precision.ExponentialUpdateLossScaleManager(init_loss_scale=2**32, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, decr_ratio=0.5)
optimizer = tf.contrib.mixed_precision.LossScaleOptimizer(optimizer, loss_scale_manager)
# optimizer = tf.contrib.mixed_precision.LossScaleOptimizer(optimizer, tf.contrib.mixed_precision.ExponentialUpdateLossScaleManager(init_loss_scale=2**32, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, decr_ratio=0.5))
# variables = tf.trainable_variables()
grads_and_vars = optimizer.compute_gradients(total_loss, variables)
grads_and_vars = [(g,v) for g,v in grads_and_vars if g is not None]
grads, variables = list(zip(*grads_and_vars))
all_are_finite = tf.reduce_all([tf.reduce_all(tf.is_finite(g)) for g in grads]) if use_fp16 else tf.constant(True, dtype=tf.bool)
# if grads_and_vars is None:
# grads_and_vars = optimizer.compute_gradients(total_loss, variables)
# gradients, variables = list(zip(*grads_and_vars))
clipped, gnorm = tf.clip_by_global_norm(grads, FLAGS.clip)
# clipped, gnorm = tf.clip_by_global_norm(gradients, FLAGS.clip)
clipped, gnorm = tf.clip_by_global_norm(
grads, clip_norm=1.0,
use_norm=tf.cond(
all_are_finite,
lambda: tf.global_norm(grads),
lambda: tf.constant(1.0)))
if FLAGS.lr_layer_decay_rate != 1.0:
n_layer = 0
for i in range(len(clipped)):
m = re.search(r"model/transformer/layer_(\d+?)/", variables[i].name)
if not m: continue
n_layer = max(n_layer, int(m.group(1)) + 1)
for i in range(len(clipped)):
for l in range(n_layer):
if "model/transformer/layer_{}/".format(l) in variables[i].name:
abs_rate = FLAGS.lr_layer_decay_rate ** (n_layer - 1 - l)
clipped[i] *= abs_rate
tf.logging.info("Apply mult {:.4f} to layer-{} grad of {}".format(
abs_rate, l, variables[i].name))
break
train_op = optimizer.apply_gradients(
list(zip(clipped, variables)), global_step=global_step)
# train_op = optimizer.apply_gradients(
# list(zip(clipped, variables)), global_step=global_step)
# Manually increment `global_step` for AdamWeightDecayOptimizer
if isinstance(optimizer, AdamWeightDecayOptimizer):
# print('+++++++++++++ IS INSTANCE +++++++++++++++++++++++ ')
new_global_step = global_step + 1
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
return train_op, learning_rate, gnorm
# if grads_and_vars is None:
# grads_and_vars = optimizer.compute_gradients(total_loss)
# gradients, variables = zip(*grads_and_vars)
# clipped, gnorm = tf.clip_by_global_norm(gradients, FLAGS.clip)
# if FLAGS.lr_layer_decay_rate != 1.0:
# n_layer = 0
# for i in range(len(clipped)):
# m = re.search(r"model/transformer/layer_(\d+?)/", variables[i].name)
# if not m: continue
# n_layer = max(n_layer, int(m.group(1)) + 1)
# for i in range(len(clipped)):
# for l in range(n_layer):
# if "model/transformer/layer_{}/".format(l) in variables[i].name:
# abs_rate = FLAGS.lr_layer_decay_rate ** (n_layer - 1 - l)
# clipped[i] *= abs_rate
# tf.logging.info("Apply mult {:.4f} to layer-{} grad of {}".format(
# abs_rate, l, variables[i].name))
# break
# train_op = optimizer.apply_gradients(
# zip(clipped, variables), global_step=global_step)
# # Manually increment `global_step` for AdamWeightDecayOptimizer
# if isinstance(optimizer, AdamWeightDecayOptimizer):
# new_global_step = global_step + 1
# train_op = tf.group(train_op, [global_step.assign(new_global_step)])
# return train_op, learning_rate, gnorm
def clean_ckpt(_):
input_ckpt = FLAGS.clean_input_ckpt
output_model_dir = FLAGS.clean_output_model_dir
tf.reset_default_graph()
var_list = tf.contrib.framework.list_variables(input_ckpt)
var_values, var_dtypes = {}, {}
for (name, shape) in var_list:
if not name.startswith("global_step") and "adam" not in name.lower():
var_values[name] = None
tf.logging.info("Include {}".format(name))
else:
tf.logging.info("Exclude {}".format(name))
tf.logging.info("Loading from {}".format(input_ckpt))
reader = tf.contrib.framework.load_checkpoint(input_ckpt)
for name in var_values:
tensor = reader.get_tensor(name)
var_dtypes[name] = tensor.dtype
var_values[name] = tensor
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
tf_vars = [
tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
for v in var_values
]
placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
global_step = tf.Variable(
0, name="global_step", trainable=False, dtype=tf.int64)
saver = tf.train.Saver(tf.all_variables())
if not tf.gfile.Exists(output_model_dir):
tf.gfile.MakeDirs(output_model_dir)
# Build a model consisting only of variables, set them to the average values.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for p, assign_op, (name, value) in zip(placeholders, assign_ops,
six.iteritems(var_values)):
sess.run(assign_op, {p: value})
# Use the built saver to save the averaged checkpoint.
saver.save(sess, join(output_model_dir, "model.ckpt"),
global_step=global_step)
def avg_checkpoints(model_dir, output_model_dir, last_k):
tf.reset_default_graph()
checkpoint_state = tf.train.get_checkpoint_state(model_dir)
checkpoints = checkpoint_state.all_model_checkpoint_paths[- last_k:]
var_list = tf.contrib.framework.list_variables(checkpoints[0])
var_values, var_dtypes = {}, {}
for (name, shape) in var_list:
if not name.startswith("global_step"):
var_values[name] = np.zeros(shape)
for checkpoint in checkpoints:
reader = tf.contrib.framework.load_checkpoint(checkpoint)
for name in var_values:
tensor = reader.get_tensor(name)
var_dtypes[name] = tensor.dtype
var_values[name] += tensor
tf.logging.info("Read from checkpoint %s", checkpoint)
for name in var_values: # Average.
var_values[name] /= len(checkpoints)
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
tf_vars = [
tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
for v in var_values
]
placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
global_step = tf.Variable(
0, name="global_step", trainable=False, dtype=tf.int64)
saver = tf.train.Saver(tf.all_variables())
# Build a model consisting only of variables, set them to the average values.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for p, assign_op, (name, value) in zip(placeholders, assign_ops,
six.iteritems(var_values)):
sess.run(assign_op, {p: value})
# Use the built saver to save the averaged checkpoint.
saver.save(sess, join(output_model_dir, "model.ckpt"),
global_step=global_step)
def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
assignment_map = collections.OrderedDict()
for x in init_vars:
(name, var) = (x[0], x[1])
# tf.logging.info('original name: %s', name)
if name not in name_to_variable:
continue
# assignment_map[name] = name
assignment_map[name] = name_to_variable[name]
initialized_variable_names[name] = 1
initialized_variable_names[name + ":0"] = 1
return (assignment_map, initialized_variable_names)
class AdamWeightDecayOptimizer(tf.train.Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
include_in_weight_decay=["r_s_bias", "r_r_bias", "r_w_bias"],
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = learning_rate
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
self.include_in_weight_decay = include_in_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
for r in self.include_in_weight_decay:
if re.search(r, param_name) is not None:
return True
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
tf.logging.info('Adam WD excludes {}'.format(param_name))
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
if __name__ == "__main__":
flags.DEFINE_string("clean_input_ckpt", "", "input ckpt for cleaning")
flags.DEFINE_string("clean_output_model_dir", "", "output dir for cleaned ckpt")
FLAGS = flags.FLAGS
tf.app.run(clean_ckpt)