Skip to content

Final project for our Computer Vision and Deep Learning Practical

Notifications You must be signed in to change notification settings

revqx/fer-cvdl-practical

Repository files navigation

CVDL – Facial Expression Recognition

Getting Started

  1. Install the needed requirements e.g. using pip:
pip install -r requirements.txt
  1. Create your own local .env file by copying the distributed file.
cp .env.dist .env
  1. Put the affectnet dataset into ./data/affectnet and the rafdb dataset into ./data/raf_db. The given validation set should be put into ./data/test. You can also change the paths in .env to your liking.

  2. Execute the main.py. Each subcommand also has a --help entry.

python main.py --help
  1. Try the live video demonstration using your webcam and the already downloaded model.
python main.py demo fu11xllu

Further fully trained models can be downloaded from here.

Inference

python main.py inference <model-identifier> <input-path> <output-path>

Arguments:

  • <model-identifier> specifies the model either by architecture or by W&B ID
  • <input-path> root for all pictures to be tested
  • <output-path> destination for .csv with results

Training

python main.py train

Optional Arguments:

  • <offline> if you want to train offline (e.g. without W&B), default is False

Analysis

python main.py analyze <model-identifier>

Optional Arguments:

  • <data-path> path to the data to be analyzed, default is the validation set (see .env)

Demo

python main.py demo <model-identifier>

Optional arguments:

  • <webcam> use webcam as input, default is False
  • cam-id specify the webcam id, default is 0
  • <input-video> set a video file as input, required if not using webcam, will also generate an output video
  • <show-processing> show the processing of the video, default is True
  • <explainability> show the explanation of the prediction, default is False
  • <landmarks> show remarkable landmarks, default is False
  • <info> show information about the prediction, default is True
  • <codec> specify the fourcc codec for the output video, default is XVID
  • <output-extension> specify the output extension for the video, default is avi, depending on the codec

Explainability

python main.py explain <model_name> --method <method> --window <window> --data-path <data-path> --examples <examples> --random <random> --path-contains <path-contains> --save-path <save-path>

Arguments:

  • <model_name> The identifier of the model to explain

Optional Arguments:

  • <method> Specify the visual explanation method (default: 'gradcam')
  • <window> The size of the window for the explanation (default: 8)
  • <data-path> The path to the dataset for testing (default: value from environment variable DATASET_TEST_PATH)
  • <examples> The number of examples to explain (default: 5)
  • <random> Whether to choose examples randomly (default: True)
  • <path-contains> Specify a string that the example paths must contain (default: "")
  • <save-path> The path to save the explanation results (default: None)
python main.py explain_image <model-name> --window <window> --data-path <data-path> --path_contains <path-contains> --save-path <save-path>

Arguments:

  • <model-name> The identifier of the model to explain

Optional Arguments

  • <window> The size of the window for the explanation (default: 8)
  • <data-path>: The path to the dataset for testing (default: value from environment variable DATASET_TEST_PATH)
  • <path-contains> Specify a string that the example paths must contain (default: "")
  • <save-path> The path to save the explanation results (default: None)
python main.py pca <model-name> --data-path <data-path> --softmax <softmax>

Arguments:

  • <model-name> The identifier of the model to visualize PCA

Optional Arguments:

  • <data-path> The path to the dataset for testing (default: value from environment variable DATASET_TEST_PATH)
  • <softmax> Whether to apply softmax activation before plotting (default: False)

Other utilities

Clip faces from AffectNet

python main.py clip

Optional Arguments:

  • <output-dir> directory to store the clipped faces, default is the path to the AffectNet dataset as specified in .env
  • <use-rafdb-format> use the RAF-DB format for the output, default is False

Create an ensemble of models

python main.py ensemble

Optional Arguments:

  • <data-path> path to the data to be analyzed, default is the validation set (see .env)

Initialize a hyperparameter sweep with wandb

python main.py sweep

Optional Arguments:

  • <count> number of runs to be performed on the sweep
  • <sweep-id> sweep id
  • sweep config to be defined in sweep.py

Prediction with activation values distribution

Get true value distributions

python main.py true-value-distributions <model-identifier>

Optional Arguments:

  • <data_path> path to the data to be get the true value distributions from, default set to RAF-DB (see .env)
  • <output_path> path for distributions and plots to be saved, default set to activation_values (see .env)

Analyze model performance with kl-divergence

kl-analyze <model-identifier>

Optional arguments:

  • <data_path> path to the data to be get the true value distributions from, default set to validation set (see .env)
  • <output_path> path for distributions and plots to be saved, default set to activation_values (see .env)

About

Final project for our Computer Vision and Deep Learning Practical

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages